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Abstract

Psychosocial factors, such as stress, abuse
history, psychiatric disturbance, coping style, and
learned illness behaviors, play an important role
in functional gastrointestinal disorders in terms
of symptom experience and clinical outcome.
These psychosocial factors are influenced by and
influence gastrointestinal disorders symptoms in
a bidirectional manner as mediated through the
brain-gut axis.

Recent Studics of brain imaging suggest
pathways involved in visceral pain perception
overlap with limbic pathways. These data may
explain how psychological factors interact with
irritable bowel syndrome. However, only limited
information has been provided on the influence
of gastrointestinal tract stimulation on the brain.
We reviewed several brain regions including
somatosensory, insula, anterior cingulate,
and prefrontal cortices in response to visceral
stimulations.

Introduction
Gastrointestinal scnsory disorders are
commonly referred to as gastrointestinal motility

disorders or functional gastrointestinal disorders.
Sensory and autonomic control of gastrointestinal
motility are thought to be modulated by the
central nerves system (CNS). Visceral discomfort
reaches awareness via neural connections termed
the brain-gut interactions. Pathophysiology
of that upregulate afferent sensory signal
intensity anywhere in this system could induce
hypersensitivity, pain, and discomfort. These
include stimulus amplification in the intestinal
tract prior to the primary afferent nerve it self.

Recent studies of brain imaging suggest the
pathways involved in visceral pain perception
overlap with limbic pathways'”. These data
may explain how psychological factors interact
with gastrointestinal disorders. Irritable bowel
syndrome (IBS) is a functional gastrointestinal
disorder characterized by chronic abdominal pain
and abnormal bowel habituation®’. Symptoms of
IBS are often aggravated by stress, which alters
colonic motility and visceral perception™’. The
functional interaction between brain and gut is
considered to be a major pathophysiology of
IBSI, 8,[().

According to other resent studies, the
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processing and modulation of visceral perception
may be related to activity of the thalamus,
insula cortex, anterior cingulate cortex (ACC),
somatosensory cortex, especially the prefrontal
cortex (PFC)>> """ It seem that activation of the
hippocampus and the amygdala relates to memory
of the pleasant” or unpleasant stimulus likely
the learning and/or conditioning'®. However,
the brain areas related to initial programming for
formation of visceral perception provoked by the
visceral stimulation is still unknown. Here we
reviewed the functional module of the brain in
response to visceral stimulations.

Activation of the primary and association
sensory cortices in responses to visceral
stimulation and somatosensory stimulation.
Rectal stimulation resulted in bilateral
activation of the inferior primary somatosensory,
secondary somatosensory, sensory association,
insula, periorbital, anterior cingulate and
prefrontal cortices’. Hobday et al’. showed that
rectal stimulation activates the inferior part of the
somatosensory cortices (SI) which also activated
by esophageal perception' '* and swallowing'’.
In contrast, anal canal stimulation activates the
middle part of SI, which is just superior to the
area for hand sensation'®. These studies suggest
that the different processes of the perception
of visceral and somatic system are represented
differently in the cerebral cortex, that is, visceral
and somatic perceptions are represented in the
inferior and middle parts of the SI, respectively.
Anal and rectal sensation resulted in a similar
pattern of cortical activation’, including areas
involved with spatial discrimination, attention
and affect. In monkeys, single neuron recordings
from the cortex have demonstrated viscero-
somatic comcergence within the SI, but with the
viscera only being represented within the inferior
part of the SI”.
perception from differently regions can be

The differences in sensory

explained by their different representation in the

28

primary somatosensory cortex.

SI and sccondary somatosensory cortex
(SII) receive the direct projections from ventral
posterior thalamic nuclei” *'

assumed that SI and SII were involved in parallel

, it has usually been

processing of tactile sensory information derived
from this thalamic source of input. The SII
receives afferents from the SI” and also directly
from the thalamus™. There is evidence to suggest
that for somatic sensation the functionally more
important afferents are those from SI and that
SII is involved in the serial secondary processing
of sensory information after primary processing
has occurred in SI**. Magnetoencephalography
studies following esophageal stimulation showed

. suggesting that for

only SII activation®™
visceral perception SII may be functionally more

important than SI.

Activity of the Insular cortex to visceral
stimulation

The insula as limbic sensory cortex, which
is based on its association with visceral and
autonomic function, its multimodal features
and, particularly, its strong interconnections
with hypothalamus, amygdala, cingulate and
728 Temperature sensation

is regarded as a submodality of touch, but Craig
129

orbitofrontal cortices

et a
rather than parietal somatosensory cortices. On
the other hand, the insula activation in response
to rectal distention was reported by Hobday et al’,
this could be due to processing of the affective

reported involvement of insular cortex

aspects of rectal sensation, or as a result of
visceral sensory-motor responses.

The insula cortex forms part of the limbic
system, with efferent connections to both the
cingulate and prefrontal cortices and afferent
connections from thalamus. Lesions of the
insula result in loss of the affective response but
preservation of the spatial discriminative aspects
of pain. Direct electrical stimulation of the insula
at surgery results in visceral motor as well as
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sensory responses which include abdominal pain
and nausea’. It is unknown, however, whether
these visceral perceptions are a direct result of
insula stimulation, or secondary to changes in
visceral motor function.

Descending projections from insular cortex
terminate in lamina [ as well as in the same
brainstem pre-autonomic and homeostatic sites
noted above’'. Stimulation or lesions of insular
cortex affect cardiorespiratory, gastrointestinal,
sympathetic and thermoregulatory activity™. In
primates, the thalamic projection to the dorsal
margin of the insula is contiguous anteriorly
with the region that receives general (vagal) and
special (gustatory) visceral input by way of the

31, 32
***, The common source of

thalamic nucleus
ascending input to insular cortex in all mammals
is the parabrachial nucleus, the brainstem
homeostatic site that integrates both vagal and
lamina I inputs; accordingly, the primordial role
of insular cortex can be regarded as modulation
of multimodal input to goal-directed, homeostatic
motor processing in the hypothalamus, amygdala

334 Consonant with the

and other sites””
enormous encephalization in primates, especially
humans, primate enteroceptive sensory inputs,
with a direct gustatory projection from the
solitary nucleus to thalamus™ and a topographic,
dedicated lamina I projection to thalamus. These
pathways seem to provide a highly resolved
enteroceptive representation of the body’s
condition in humans, including the specific
sensations of temperature, pain and visceral

perception from the body.

ACC and visceral perception

The ACC universally activates in human
studies of pain, both somatic and visceral’®”". The
ACC is also involved in autonomic responses.
ACC stimulation by electrodes leads to
autonomic responses that include cardiovascular
and gastrointestinal motor responses’” . ACC
stimulation is associated with nausea, vomiting,

and bowel evacuation very similar to stress
responses in animals®. These responses are also
typical of functional gastrointestinal symptoms,
specifically IBS. In humans, surgical lesions
of the ACC reduce the suffering associated
with chronic pain (the affective portion of pain)
without eliminating the detection of pain*'. By
positron emission tomography (PET) scanning,
ACC activity has also been linked to self-
Hypnosis to increase the
unpleasantness of painful thermal stimulation also

induced sadness™.

increases ACC activation, measured by PET™.
The ACC forms part of the limbic system
and has also been shown in PET studies to be
activated by sad emotions”, and to be activated
during depression”.  Esophageal stimulation
have caused ACC activation during non-painful
visceral perception”.

of non-painful visceral stimuli could explain

The ACC representation

the greater autonomic reflexes and affective
responses seen in response to visceral, compared
with somatic stimulation*. ACC activation has
also been demonstrated with the anticipation
of visceral' and somatic pain’’. This suggests
a role for the ACC in generating an affective
response to a stimulus. In addition, the ACC has
connections with the motor cortex, and it has been
suggested that plays an important role in selecting
appropriate behavioral response to stimulus®.

The ACC is a brain center critically involved
in pain and the affective responses to pain. It
has direct neural connections to a variety of
brain centers such as the limbic system (anterior
thalamus and amygdala), autonomic effector
arcas (dorsal vagal motor nucleus, amygdala,
and hypothalamus), and centers of arousal and
pain modulation (periaqueductal gray and locus
caeruleus). Given the association of the ACC
with pain, affect, and gut motor function, its
relevance to IBS is great'’.

29
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PFC activation to visceral perception and
emotion

The PFC is involved with cognition and
memory, and receives inputs from the sensory
association cortex. The PFC is thought to serve
higher executive functions in pain perception.
We reported that distention of the descending
colon induces visceral perception and emotion
and that these changes significantly correlate
with activation of specific regions in the brain
including the limbic system and the association
cortex, especially the PFC (Figure 1)°.

The PFC has recently been considered to be
projected arca of visceral perception and signals
from visceral organs are projected to the PFC
through the lateral thalamic nucleus group'*. An
alternative interpretation is that the dorsolateral
PFC redirects attention away from pain, as
it has been implicated in general attentional

47, 48
processes

. PFC mechanisms may play a role
in triggering opioid release in the midbrain. In
addition, it has been suggested that the PFC is

responsible for evaluating given stimulations

against previous experience and accumulated

memory and may be the final point where the
exact meaning of cach stimulation (comfort or

49, 5 . . .
%30 Visceral stimuli

discomfort) is determined
possibly cause associated learning of the visceral

perception through activation of the PFC.

Conclusions

CNS processing of afferent (sensory)
information may be abnormal in patients with
IBS, causing overexpression of visceral afferent
stimuli. Previous studies of visceral and somatic
pain using PET or fMRI to measure regional
cerebral blood flow have suggested that the ACC,
PFC, insular cortex, and thalamus are important
in pain perception. Studies of visceral pain
have generally suggested that these same brain
centers are important in sensation. However,
there are many unknown points of processing and
modulation of visceral perception, accompanying
emotions, and about its pathophysiology.
We need some ideas basis for the volitional
modulation of feclings, emotion and efferent
activity affecting the taste of body that clearly

emphasizes the role of the body in human

- Prefrontal Cortex

- Thalamus

~= Anterior Cingulate Cortex

- Inferior Parietal Lobe

- Insular Cortex

“Cerebellum

Figure 1. Parametric maps showing brain activation in 15 healthy volunteers during colonic distention’. Regions of
activation (gray areas) were superimposed on Talairach-Tournoux stereotaxic atlas of the human brain™. Regions of
the brain that were activated during colonic distention with 40 mmHg comprised the putamen, thalamus, cerebellum,
caudate body, superior frontal gyrys, anterior cingulate gyrus, postcentral gyrus (Broadmann Area: BA 40), and inferior
parietal gyrus (BA 40).
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consciousness and interaction.
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