義足のけりだしが歩行に与える影響

新潟医療福祉大学 義肢装具自立支援学科江原義弘

1 目的

健常者の場合，歩行中の立脚後期に足関節が大きく底屈し身体を前方に押し出すかのような動きをする。ここではこれ を「けり」と表現する。けりが身体を前方に押し出している とする意見と，けりは身体を押し出すのではなく前方にロー リング（回転）させているだけとする意見がある。さらには， けりは身体全体に影響を与えているのではなく，同脚にエネ ルギーを与えて遊脚期に移行させているとするデータも示さ れている。健常者歩行について見解が分かれているが，義足歩行についても見解が定まっていない。特に近年，エネルギ ー蓄積型の足部が普及してきたが，この場合に足部が身体に どのようなエネルギーを与えているかは不明である。本研究 の目的は義足脚による「けり」が身体に与える作用を検討す ることである。

2 対象

対象は下腿切断者 1 名であった。 $34 才, ~$ 男性，体重 69 kg ，身長168cmであった。歩行能力は高い。測定に使用した足部は単軸型，SACH足部，シアトルライト，マル チフレックス，フレックスウォークの5 種類であった。対照 として健常者 1 名の計測を同様におこなった。

3 測定方法

被験者の身体に 10 点の反射マーカを貼付し， 9 m の歩行路を歩行中の身体運動をELITEシステムならびに床反力計にて同期して計測した（図 1）。得られたデータを臨床歩行分析研究会提唱のD I F F 形式に変換し，関節モーメント・体節間浸透力を計算したあと自作の計算ソフトで身体体節間 のエネルギーの流れを計算した。計算は以下の式で行った。

$\mathrm{Ph}=\mathrm{Fh} \cdot \mathrm{Vh}$

$\mathrm{Pk}=\mathrm{Fk} \cdot \mathrm{Vk}$
$\mathrm{Pa}=\mathrm{Fa} \cdot \mathrm{Va}$
Pは体節間を流れるエネルギー（パワー），Fは体節間浸透力， Vは関節の運動速度である。h，k，aはそれぞれ，股関節•膝関節•足関節を示す添え字である。

例えば Phが正であれば，大腿部から体幹に向けてエネル

図1 歩行計測システム

ギーが流れており，負であれば逆に体幹から大腿部にエネル ギーが流れている。

4 結果と考察

図 2 は健常対照者のデータを床接地から次の床接地までの歩行 1 周期でグラフ化したものである。立脚後期に大腿部か ら体幹に流れるパワーが正であることがわかる。

図2 健常者の歩行中の体節間パワー

このことから健常者ではけりのエネルギーは確かに体幹に伝達されることが推測される。切断者歩行の各足部での立脚後期のパワーの最大値を棒グラフにしたのが図3である。切断側の股関節ではすべての足部について立脚後期では負にな った。このことは，切断側では下肢のエネルギーが体幹を押 し上げるのではなく，むしろ体幹（骨盤）が切断肢をつりあ げているとみなされる。ただ興味あることに，4種類の足部 の中でフレックスウォークがもっとも負の値が小さかった。 フレックスウォークは従来の研究でもっともエネルギー解放量が多いことが知られており，エネルギー解放量が大きい足部は体幹によるつり上げの負担がより小さいことが示唆され た。本研究は神奈川県総合リハビリテーションセンターの別府政敏氏，野村進氏，国見ゆみ子氏，高橋茂氏との共同研究 である。

TRANSM TTED POW ER M ATTS）

図3 切断者歩行中の立脚後期の体節間パワー最大値

