
1

Abstract
　Computational models of physiological phe-
nomena are not only interesting by themselves but
are also potentially able to be a partial substitute
for student practice with real animals. In this pa-
per, the author introduce a student-oriented simu-
lation system for a popular model of the sodium
spike that covers the principles of membrane ex-
citation, essential for an understanding of neuronal
function. The approach here employs the popular
Android operating system for student practice to
build a Java-based simulation of the well-known
Hodgkin-Huxley theoretical model that has long
provided insights in this field. Despite totally writ-
ten in Java, the strip-chart display and user-trig-
gered stimulation capabilities have been readily
executed even on low-cost tablets and relatively
primitive personal computers. By employing us-
er-defined membrane parameters, together with its
ability to program numerous types of membrane
stimulation, this modeling system may be quite
productive in helping students of general physiol-
ogy and medicine to more quickly and accurately
obtain a strong understanding of the sodium spike
and its related phenomena.

Introduction
　Creating a quantitative model of a biological
phenomenon has long been one of the most impor-
tant and attractive topics in physiology. A classic
example is a mathematical model of the excitatory
membrane, proposed in the 1950’s by Hodgkin
and Huxley. They derived the necessary equations
after careful consideration of the physical chemis-
try involved (the chemical kinetics and an equiva-
lent circuit of membranes), and determined the
required parameters through repeated experiments
using the giant axons of squids. Despite the rela-
tively simple formulae involved, their model ex-
plains many important properties of sodium
spikes, such as the all-or-nothing response, resting
periods, and anodal break potentials [1]. Hence, a
strong understanding of this model would facili-
tate the speed and depth of how well students can
grasp the nature of excitatory membranes.
　The Hodgkin–Huxley algorithm described in
[1] can be efficiently calculated by personal com-
puters (PCs), and the author has implemented in
on numerous platforms including MS-DOS, OS/2,
and today’s major operating systems (OSs) for
PCs (Windows, Mac OS X, and Linux). These re-
sults were achieved by using Turbo Pascal and its

Report article

An Android implementation of the Hodgkin-Huxley membrane model
for student practice

Haruo Toda

Corresponding author: Haruo Toda
Department of Orthoptics and Visual Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata 950-3198,
Japan
TEL/FAX: +81-25-257-4753, E-mail: toda@nuhw.ac.jp

Department of Orthoptics and Visual Sciences, Niigata University of Health and Welfare, Niigata, Japan

Keywords: �Hodgkin-Huxley model, excitatory membrane simulator, Android, Java language, Open-source

Received: 19 January 2019 / Accepted: 19 March 2019

2

Running head: Membrane simulator for Android

tions of V (formulae not shown). In this model, if
I is zero, V can be solved as a function of time.
This assumption is fulfilled when the whole mem-
brane excites at the same time [2]. Because the
differentials of n, m, and h are also functions of V,
the main equation is a second-order non-linear dif-
ferential equation of t, which can be only solved
by a numerical analysis. In this simulator, Har-
tree’s method was employed to obtain a numerical
solution of the model in a manner similar to that
used by Hodgkin and Huxley [1]. The time step
for the calculation varies between 0.01 and 0.001
ms according to the rates of parameter changes
and the membrane potential. The core calculations
are encapsulated in an object or a class (membrane
object) and its outputs are logged approximately
every 0.05 ms (the interval of the data logging de-
pends on the time per width of the plot area in pix-
els). The user can save the logged data to a text file
and recall them on the screen by dragging items to
the plot area. To visualize the log data, GNU R
(https://www.r-project.org) is used.

2. Multithread programming in Android
　Before making the Android version, PC and
Macintosh applications were updated using La-
zarus (version 1.8.4; http://www.lazarus-ide.org/)
to have a strip-chart style main window (a window
that automatically scrolls leftward and new plots
continuously appear at the rightmost of the win-
dow). Lazarus is an open-source rapid application
developing environment that is highly compatible
with Borland Delphi and its predecessor, Turbo
Pascal. As a next step, the Lazarus source codes
were ported to Java source codes for Android us-
ing Android Studio for Macintosh (versions 3.1.3
and 3.2). The Android application was tested on
two tablets (MediaPad T3 7 and MediaPad 7
Youth; HUAWEI, ROC) and one Android stick PC
(CX919; Andoer, ROC) running Android 6.0,
4.1.2, and 4.2, respectively. The CPUs utilized
here are Cortex-A7, 1.3 GHz quad-core, Cor-
tex-A9, 1.6 GHz dual-core, and Cortex-A9, 1.6

descendants (Speed Pascal, Virtual Pascal, and
Lazarus), and this model readily enables students
to practice working with how the algorithm works.
However, due to widespread use of Android OS-
based mobile devices are widely available today.
Being easy-to-use and relatively of low-cost and
readily accessible platform, to further facilitate
student access to quickly learning the nuances of
sodium spikes and membrane excitation. Although
Android devices are relatively easy to program, a
Hodgkin-Huxley model for this platform surpris-
ingly cannot be found in the most popular search
engines (with a keyword “Hodgkin and Huxley”
in Google Play, or with a combination of keywords
“Android” + “Hodgkin” + “Huxley” + “apk” in
Google (http://www.google.co.jp/), where “apk”
stands for the application package format of An-
droid OS, searched on July 19, 2018).
　In this report, the author explains how an Object
Pascal-based membrane simulator was ported
over to the Java language for Android OS-based
mobile devices, and the implications of this result.

Materials and Methods
1. Numerical Analysis of the Hodgkin-Huxley
model
　The main element of the Hodgkin-Huxley mod-
el is given as their equation 26 in [1].

 (1)

where, V is the membrane potential; I is the total
membrane current; CM is the membrane capaci-
tance; gK and gNa are the maximum conductance of
the potassium and sodium ions, respectively; gl is
the leakage ion conductance; VK, VNa, and Vl are
the equilibrium potentials for potassium, sodium,
and leakage ions, respectively (the resting poten-
tial is zero, depolarization is denoted as negative);
n, m, and h are the ‘gate’ parameters that deter-
mine the open states of the potassium and sodium
channels. The dn/dt, dm/dt, and dh/dt are the func-

3

Niigata Journal of Health and Welfare Vol.19, No.1

to 100 iterations of the main calculation loop), the
user feels as if the application concurrently calcu-
lates the membrane model, processes the user in-
puts, and refreshes the waveforms on the screen,
without multithreading. In Android as well, such
pseudo-concurrent processing can be achieved by
posting a strip of the program codes, called “Run-
nable”, to the message queue (Figure 1C). Howev-
er, in this environment the performance of calcula-
tions was not fast enough and multithread
programming was required to achieve an accept-
able speed at the expense of difficulties in debug-
ging and possible memory leaks. Fortunately, the
Android OS has the AsyncTask class, which is es-
pecially designed for such a purpose.

GHz quad-core, respectively. For the Lazarus and
Android programming, two Macintosh computers
were used (Mac Pro; Apple, CA, USA), both run-
ning OS X El Capitan.
　Of course the simulator must be able to accept
user inputs (e.g. pressing a mouse button or touch-
ing to the screen) and continuously refresh the
screen(s) as the calculation for simulation are per-
formed. In the Lazarus environment, there is a
convenient method to achieve this, called “Appli-
cation.ProcessMessages”, which executes the cur-
rent entries in the message queue attached to the
application (Figure 1A). The program can call this
method at an approximately regular interval to al-
low user inputs and screen refreshing (Figure 1B).
If the interval is short enough (in this case, after 10

Figure 1. �Schematic of (pseudo) concurrent processing in GUI applications.
A: usage of the Application.ProcessMessages method in Lazarus. B: schematic schedule of
calculation of the membrane model and user interface processing. C: usage of the Hander.
postDelayed method in Android. Calling this method posts the codes in the inner loop to the
message queue for further execution.

Outer loop

Outer loop

Main (UI) thread

4

Running head: Membrane simulator for Android

tirely in Java, and low-cost tablets or stick-PCs
were used to build and test it, sufficient perfor-
mance was achieved, so that it can serve as an ef-
fective learning system. Figure 1 shows the ap-
pearance of the simulator’s dashboard. The
strip-like time chart is displayed at the left side on
the panel (where many colored lines are drawn
against a black background). When user presses
the “START” button, the worker thread is invoked
to solve the membrane model repeatedly until the

3. Availability of the source code
　The complete set of the source codes for the
simulator is freely accessible via Google Drive
(https://drive.google.com/file/d/1EGE8z6NOBie
R6ho5OhsyuaOalQ-GySlh/view?usp=sharing)
under the GPL license.

Results
1. The threshold and the refractory periods
　Although the membrane simulator is written en-

Figure 2. �A calculated action potential.
A: Appearance of the membrane simulator on an Android 6.0 tablet. The large black rectangle
works as a multi-channel strip-chart. The membrane potential, sodium conductance, and
potassium conductance are displayed on the upper half in yellow, red, and green, respectively.
On the lower half of the strip-chart, ‘n’, ‘m’, and ‘h’ parameters are displayed in blue, magenta,
and grey, respectively. The vertical grey line can be moved by user with a slider to read out
the membrane parameters that are displayed below the “STIM” button (time, the membrane
potential, sodium conductance, potassium conductance, ‘n’, ‘m’, and ‘h’ parameters, from
top to bottom). B: Externally plotted time-courses of (top) the membrane potential, (mid) the
sodium and potassium conductance, and (bottom) ‘n’, ‘m’, and ‘h’ parameters. The time-
courses are based on the data file derived in the same run as A. Downward arrowheads
(numbered 1 to 4) indicate the timings of depolarizing voltage stimulation (10 mV).

5

Niigata Journal of Health and Welfare Vol.19, No.1

Hodgkin and Huxley [1], the resting potential un-
der the standard conditions is zero, and a negative
value represents depolarization. Even in two older
devices running Android 4, the simulator allowed
user-triggered stimulation even while it was up-
dating the screen continuously. Pressing the
“STIM” button immediately changes the mem-
brane potential to the user-defined value (in Figure
2A, -10 mV). This function helps students under-
stand principles of threshold and refractory peri-

“STOP” button (displayed in the same position as
the “START” button) is pressed. After the end of
the calculations, the user can drag the strip-chart
to bring back the logged data which was earlier
extinguished from the panel. Moreover, the user is
able to move the read-out cursor (the vertical grey
line) to inspect the values of each parameter at any
desired point (displayed on the right).
　The user can also enter an initial membrane po-
tential in the upper right text box. According to

Figure 3. �Setting panels of the simulator.
A: Membrane constants setting panel of the simulator on an Android 6.0 tablet. In this example,
gNa is to be set. B: Examples of simulated responses with a lowered (from 120 to 60 mmho/
cm2) gNa: (left) local potential in the response to a 10-mV depolarization, (right) reduced action
potential following a 20-mV depolarization. C: A part of the stimulation setting panel of the
simulator on an Android 6.0 tablet. Each row corresponds to a single stimulus. The input fields
are, from left to right, the selector for current or voltage stimulation, the stimulation start time,
the stimulation end time, and the stimulation intensity. The following two values (red eclipse)
indicate the membrane potentials at the start and the end of stimulation, respectively. D: A
time-strength relationship to constant-current stimuli. E: The voltage threshold vs. stimulation
duration.

M
em

eb
ra

ne
 p

ot
en

tia
l (

m
V

)

M
em

br
an

e
po

te
nt

ia
l a

t s
tim

ul
at

io
n

an
d

(m
V

)

6

Running head: Membrane simulator for Android

higher threshold membrane potentials (Figure
3E). In simulating the anodal break potentials
(Figure 4), the ‘h’ parameter increases (dotted line
on the bottom panel) during the hyperpolarizing
current injection, and when the stimulation breaks,
the ‘neuron’ fires without any depolarizing stimu-
lation.

Discussion
　To help extend student access to a productive
membrane simulator for the Hodgkin-Huxley
model, it earlier PC version was ported from an
Object Pascal-based GUI program to a Java-based

ods. For example, in Figure 2B, we can see that
depolarization to -10 mV at first elicited an action
potential (arrowhead 1); however, within the hy-
perpolarization phase, depolarization to the same
voltage did not elicit an action potential (arrow-
heads 2 and 3), thereby simulating the refractory
period. At this period, the potassium conductance
is high (dashed line on the middle panel) and the
‘h’ parameter is low (dotted line on the bottom
panel), representing decreased membrane resist-
ance and inactivation of the sodium channel, two
major causes for threshold increase in the refracto-
ry period [3].

2. Setting the membrane parameters and pro-
grammed stimulation
　The user can modify all the membrane parame-
ters appearing in equation (1): CM, gK, gNa, gl, VK,
VNa, and Vl. For example, the primary effect of the
sodium channel blockers can be simulated by low-
ering gNa (Figure 3A and B), while the effect of
tetraethylammonium on the voltage-dependent
potassium channels can be simulated by lowering
gK.. Likewise, the effects of intra-or extracellular
ionic compositions can be simulated by changing
the equivalent potential for the corresponding ions
(VK, VNa, and Vl).
　The simulator has a stimulation setting panel
(Figure 3C), which allows for a wide array of pro-
grammed stimulations. The user can set the type
(voltage or current), timing, duration, and intensi-
ty of the stimulation up to five times. The mem-
brane potentials before and right after each stimu-
lus are displayed on the panel (shown as the red
eclipse in Figure 3C). The user can simulate the
time-strength relationship in constant current
stimulation via this function. For example, in Fig-
ure 3D, the minimal current to evoke an action po-
tential is an approximately hyperbolic function of
the duration of the stimulation current with a small
positive offset corresponding to the rheobase [2].
The ‘h’ parameter is decreased during a prolonged
injection of depolarizing current, which results in

Figure 4. �An anodal break potential.
Externally plotted time-courses of (top)
the membrane potential, (mid) the so-
dium and potassium conductance, and
(bottom) ‘n’, ‘m’, and ‘h’ parameters.
The time-courses are based on the
data file derived in the same run as A.
Downward arrowheads (numbered 1
to 4) indicate the timings of depolariz-
ing voltage stimulation (10 mV).

7

Niigata Journal of Health and Welfare Vol.19, No.1

teaching organizations without network special-
ists. Fortunately, HTML5 newly supports the can-
vas elements for dynamic two-dimensional graph-
ics and the Web Workers API for multithread
execution [3]. These new features can be pro-
grammed in JavaScript, one of the most frequently
used object oriented programming languages [4].
The author is planning to port the simulator to the
HTML5 environment and test it under practical
conditions (student practice or demonstration in a
class) in the near future.

Conflicts of Interest
　There are no conflicts of interest to declare.

References
1.　�Hodgkin AL, Huxley AF. A quantitative de-

scription of membrane current and its applica-
tion to conduction and excitation in nerve.
Journal of Physiology. 1952; 117: 500-544.

2.　�Brinley Jr. FJ. Excitation and conduction in
nerve fibers.In: Mountcastle VB, editor. Med-
ical Physiology. 14th ed. St. Louis: The C.V.
Mosby Company; 1980; 46-81.

3.　�Mozilla Developer Connection. “HTMLCan-
vasElement”. Available from: https://devel-
oper.mozilla.org/en-US/docs/Web/API/
HTMLCanvas Element (accessed November
15, 2018)

4.　�Mozilla Developer Connection. “Using Web
Workers”. Available from: https://developer.
mozilla.org/en-US/docs/Web/API/Web_
Workers_API/Using_web_workers (accessed
November 15, 2018)

Android application. This tool can enable students
to simulate the primary properties of a sodium
spike (all-or-nothing nature, refractory periods,
and anodal break), the effects of the intra- and ex-
tracellular ionic concentrations by manipulating
equivalent potentials, and also the effects of sodi-
um- and potassium-channel blockers by reducing
gNa+ and gK+. Though totally written in Java, the
strip-chart display and user-triggered stimulations
can be concurrently executed even on a dual-core
device running Android 4. Such performance may
be due to recent improvements in the Java Virtual
Machine, the ARM processors, and also to sim-
plicity of the calculations described in the original
article [1].
　A thorough knowledge of the excitatory mem-
brane’s behavior is essential for understanding
neuronal functions. However, in vivo (i.e., using
real animals) student practice with intracellular re-
cording is difficult outside the large medical
school faculties. Because these Android devices
are easy to use and available at affordable prices,
this Java-based membrane simulator could be
readily used by virtually every students as a rea-
sonable substitute for in vivo practice with intra-
cellular recording.
　However, the current version of the simulator
has some issues that need addressing as follows; 1.
Based on the original article [1], depolarization
from the normal resting potential is displayed in
the negative. The instructor could use this feature
to explain that the potential read-out depends on
the reference electrode location and selection of
the terminal (positive or negative) that is to be
connected to the signal electrode, 2. The stand-
alone usage of the simulators is secure, but some-
what degraded. Running the system on HTTP cli-
ents of mobile devices (e.g., Safari for iOS,
Chrome for Android OS) may be preferable for
student practice. Although Java is mainly used to
create server-side programs today, it may not be a
suitable language to write a Web-based simulator
because such a servlet is difficult to maintain for

