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Abstract

Bayesian inference Tool (B. I. T.) is a software
program developed to support medical profes-
sionals and students in the application of Bayesi-
an inference to medical decision-making and ed-
ucation. This software program makes it possible
to visualize the posterior probability distributions
of Bayesian inference. In addition, its interface
aims to facilitate the intuitive understanding
of the operative procedures. For many cases of
Bayesian inference with normal distributions, the
graphical representation of the posterior probabil-
ity distribution changes dynamically when the in-
put value is assigned by the user with the use of a
computer mouse; this procedure also enables the
dynamic calculation of the posterior probability.
When operating this software, it is desirable for
the user to have basic knowledge and understand-
ing of the presuppositions as well as applications
of Bayesian inference.

Introduction

In outcomes research of health and medical
sciences, Bayesian inference is frequently used
in meta-analysis [1], estimation of morbidity
prevalence rate [2], as well as calculation of pub-
lic health indicators of a certain region [3]. The
application of Bayesian inference not only facili-
tates the understanding in terms of the tendencies
of the overall patient group, but also helps decide
whether or not to accept the difference between
two or more groups, with a certain degree of con-
fidence. Moreover, with Bayesian inference, it is
feasible to infer whether there is a difference in
the data collected from different healthcare facili-
ties. In probability and statistics, the tool in infor-
mation technology—with features for statistical
calculation, interactive graphical user interface,
computer simulation, data analysis and visual-
ization—has been recognized to be effective in
terms of raising students’ examination scores, and
level of satisfaction, and so on [4]. When apply-
ing Bayesian statistics in daily life, it would be
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time-consuming and labor-intensive for the user
to calculate and make inferences with the given
formulae on each occasion. It is considered that
the feature for displaying the dynamic changes in
graphical curves of the probability distributions is
highly suitable for expressing the Bayesian updat-
ing [5] that is characteristic of Bayesian statistics.
In the future, when Bayesian inference is applied
in the contexts of medical decision-making, us-
er-friendly software programs that can not only be
operated intuitively via the graphical user inter-
face (GUI) but also whose visualized results can
be understood easily by the user are deemed high-
ly useful and practical, particularly for healthcare
professionals and students. In this study, the word
“intuitive” is defined as needing no complex pro-
cedures for manipulating the data input as well as
interpreting the resulting output. Despite the use-
fulness of the Bayesian approach, a want of us-
er-friendly software programs for healthcare pro-
fessionals and students is a non-negligible issue.
MRBAYES [6] is an already known software pro-
gram dedicated to Bayesian inference. However,
despite its capabilities to handle intricate statisti-

cal models, MRBAYES may not be suitable for
general medical practitioners and students who
wish to gain a deeper understanding of Bayesian
statistics (because of its rather complicated oper-
ational procedures). The purpose of the software
program—DBayesian inference Tool (B. 1. T.) that
the authors of this paper have developed—is to
support general clinicians and medical students in
learning Bayesian inferences for normal distribu-
tions that are rudimentary and highly applicable;
the software program, B. 1. T., supports the user
in his/her learning process by providing an envi-
ronment where dynamic and intuitive operations
are possible.

Materials and Methods

The innovative aspects of B.1. T.’s functions
that should be achieved in development are
shown in Table 1. The essential requirements for
realizing the innovative functions of the software
program are listed in Table 2. The required items
for inferences and posterior probability distribu-
tions are shown in Table 3. Each item in Table 3
was selected, in accordance with the studies on

Table 1. The innovative aspects of B. I. T.’s functions to be achieved.

Requirement 1.

As many operations as possible shall be performed on one operation screen.

Requirement 2.

Requirement 3.

Requirement 4.

Requirement 5.

Requirement 6.

Requirement 7.

Requirement 8.

User’s operations are executed at ease through visual means.

When the observed data required for Bayesian inference are assigned by entering the data, the graphical
curve of the posterior distribution is immediately calculated and displayed.

As the initial values for Bayesian inference are replaced with newly observed values, the graphical curve
of the posterior distribution is re-calculated and re-displayed.

By continuously performing Requirements 3 and 4, the graphical curves are displayed in animation
simultaneously.

When the observed data required for Bayesian inference are entered, the prior probability and the posterior
probability are immediately calculated and displayed.

At the time of replacing the data on observed values for Bayesian inference from the initial value(s), the
prior probability and the posterior probability shall be re-calculated and re-displayed.

Updating in graphical curves and probabilities are automatically reflected in synchronization with the
execution of data-updating. There is no need to update the display of graphical curves and probabilities
with buttons or other procedures.
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Table 2. The essential requirements for improving this software to realize the innovative functions of
B.I.T.

Requirement 9. It can be operated only with a computer mouse; i.e., the use of a PC keyboard is not required.
Requirement 10.  Users need not enter command statements when operating.

Requirement 11.  The program can be controlled by users with no expertise in computers.

Requirement 12.  The option with/without prior information needs to be added (exclusion when using approximations).
Requirement 13.  The feature by which the user can print every operation screen shall be added to the software program.

Requirement 14.  The facility in operations for downloading, installing and launching is ensured.

Table 3. Bayesian inferences Available in B. I. T.

(i) Bayesian inferences on one normal population N(y, 6*) (u: mean, ¢°: variance)
(i-1) Inference of p with a known c?
(i-2) Inference of 6 with a known p
(i-3) Inference of p with unknown p and ¢?
(i-4) Inference of 6> with unknown p and o>

(i) Bayesian inferences on two populations, Ni(p1, 61) and N2(pe, 62%) (w1, p2: mean, 612, 622 variance)
(ii-1) Inference of p1 - w2 (where 61? = 62> = 6% and ¢? is known)
(ii-2) Inference of pi - p2 (where 61> = 62> = 6 and ¢? is unknown)
(ii-3) Inference of w1 - p2 (where 61 # 62? and both 612 and 62 are unknown)
(ii-4) Inference of variance ratio on two normal populations

(iii) Bayesian inferences on three normal populations ; N1(81, 612) , N2(62, 622) and N3(63, 63%)
(iii-1) Inference of 6 = (01,62,03) (where 612, 622, and 63 are unknown, 61>=62>=63’=c2 can be assumed).
(iii-2) Comparisons of the means of two groups with three normal populations respectively. Three normal populations’
variances are unknown and equal.
(iii-3) Evaluation of the equality of variances among three normal populations, 612, 622, and 632
(iii-4) Inference of the variance of three normal populations (where the three groups’ variances are unknown but their
equality is known)

(iv) Bayesian inference of bivariate normal distributions: N [{Z' } F” T D

o) o

2 21 2

(iv-1) Inference on the correlation coefficient of bivariate normal distributions
[
(iv-2) Inference of two random variables with bivariate normal distributions: { 0' }

(iv-3) Inference of variance-covariance matrix with bivariate normal distributions: o> and c222

(v) Bayesian inference on two bivariate normal distributions, where: N{[ﬂ'x } = ,J
lLllY

2y

and N[{ylx } ZZJ, (21, 22; variance-covariance matrix)

Hix = Hyx

Hiy = Moy

(v-1) Inference of the difference in means of two normal distributions: { } Zr1=3%2=%)
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Bayesian statistics by Gelman et al. [7], Lee [8],
Lindley [9], and Zellner [10]. For more details on
each of the formulae, see [7-10].

The software program we have developed has
been written with Microsoft(R) Visual Basic(R).
net 2017(TM). The software’s intended func-
tion-ability has been confirmed with a computer
with the Windows(R) 10 operating system.

Results

One of the window screens is shown in Figure
1 as an example. The items listed in Table 3 have
all been implemented in this software program.
A dedicated operation screen is provided for each
Bayesian inference. Some of the formulae for cal-
culating posterior probability distributions in this
software program utilize various approximations.
(ii-3) in Table 3 uses Patil’s approximation [11].
The formula in (iii-3) is approximated by that of
Bartlett test [12]. The formula in (iv-1), likewise,
is an approximation of a complicated formula of
integration [13]. The formula of integration used
to calculating posterior probability distribution
uses a simple method of quadrature by parts.

The following details pertinent to B. 1. T. show
that the requirements of Table 1 have been met.
The display is divided into the entire left section
where the user can assign and change observed
values, and the right section which is, in turn,
split into the upper-right section for displaying
graphs, and the lower-right section for showing
calculated values (Corresponding to Requirement
1). As needed, the user can adjust or change the
range of average values via manipulating the
slide bar. Moreover, the x-axis of each curve in
the graph can be adjusted according to the user’s
needs (Requirement 2).

This software program automatically calculates
posterior probability distribution upon the user’s
assignment of various observed values required
for Bayesian inference, and the user can visually
comprehend prior and posterior probability distri-
butions with dynamic animations (Requirements

3,4, and5).

The posterior probability of the credible inter-
val within the range specified by the user can also
be approximated and displayed (Requirement 6).

The re-calculation of credible interval can be
done if the user instructs the program to do so by
changing the range of the interval, which is then
followed by re-calculation and graphical re-dis-
play (Requirement 7). Users can not directly
change the display of graphical curves and proba-
bilities (Requirement 8).

B. I. T. implements the requirements of Table 2
as detailed below. With a simple use of a comput-
er mouse, all of the operations shown in Table 3
can be executed. There is no need for the user to
write and enter a computer command, and it can
be operated without a keyboard. B. I. T. does not
necessitate the user to have specialized knowl-
edge of computers (Corresponding to Require-
ments 9, 10, and 11).

When using this feature, the user can select
either a locally uniform distribution with an ob-
jective perspective, or a natural conjugate prior
distribution with an emphasis on subjective and
experiential prior information (Requirement 12).

Upon clicking on the “Instructions” button,
a manual in PDF format opens and the user can
refer to information on theorems and formulae
of each inference along with information on how
to operate. “Print” button prints the screen (Re-
quirement 13). B. I. T. can be downloaded from
the following website (URL: https://upload.umin.
ac.jp/fileshare/registrant.cgi). B. 1. T. is distribut-
ed as Windows Installer package and is easy to
install and launch (Requirement 14).

Examples 1-5 show selected samples of this
software program’s applications carried out by
the developers. The following are examples
where the use of Bayesian statistics for medical
decision-making in daily clinical practice is as-
sumed. The operation screens that suit the given
situations have been selected. Figures 2-9 are ex-
amples of graphical curves dynamically changed
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by operating this software program.

Example 1:

When the trial material assuming an unknown
normal distribution was used in the test, the ob-
served values were as follows:

the mean, 45;

the variance, 17.8;

and the sample size, 10.

Provisional experiments conducted beforehand
resulted in the mean of 40, the variance of 22.2,
and the sample size of 10.

Using the analyses in (i-3) and (i-4), 95%
credible interval of the marginal posterior distri-
bution of the mean turned out to be 42.5+10.307
as shown in Figure 2. As shown in figure 3, the
marginal posterior distribution at 95% credible
interval resulted in the range of variance between
0 and 48.

Example 2:

This example has the following scenario: There
is a hypothetical case wherein both a new med-
icine and an old medication are known to have
the effect of lowering Alanine Aminotransferase
(ALT) values (IU/L). If the new medicine lowers
ALT values by more than 20 (IU/L) as compared
to the older (conventional) medication, one may
judge that the new one is more effective than the
other one. Administering these medicines to two
groups (one group composed of 17 subjects given
the new medicine, and the other made up of 12
subjects given the old drug) without any differ-
ence in terms of severity resulted in the following
results in ALT values: Group 1 with the mean of
45, and the variance of 25, and Group 2 with the
mean of 68 and the variance of 54.5. No prior
information was utilized. According to (ii-4), the
p-value of the posterior distribution of these two
samples being within the range between 0.5 and
2 is 0.43, as shown in Figure 4. This confidence
estimate is not robust enough to ascertain equal
variance or homoskedasticity. Without consider-
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ing the possibility of equal variance, the posterior
probability distribution of the means, as shown
in (ii-3), has the mean value, 23, the variance,
82, and the degree of freedom, 17, which ap-
proximate the generalized t-distribution. The
confidence estimate for the new drug being more
effective than the prior one is about 64 percent
(Figure 5).

Example 3:

At a medical facility X, three groups of patients
were selected from three clinical departments,
each of which was named, A, B, and C. Subse-
quently, ALT values were measured for the three
groups, and the results indicated that the mean,
the variance, and the sample size were respective-
ly as follow:

A (45, 158.3, 7), B (52, 175, 5), and C (60,
160, 6).

Each group’s ALT values follow a normal dis-
tribution, whose variance is unknown.

No prior information was utilized. Assessing
the homogeneity of the variance for each of the
three groups through approximating chi-square
distribution with the degree of freedom of 2 (as
shown in iii-3), it turned out that the variances
were contained within the 99% highest density
region. As a result, it was determined that the ho-
moskedasticity could not be rejected (Figure 6).
In the analysis as seen in (iii-2), it was inferred
at the 99% credible interval that the variance as-
sumes the value between 0 and 476 (Figure 7).

Example 4:

Based on the patient groups as illustrated in
Example 3, the posterior probability distribution
that the mean value of the ALT measurements in
each of the patient groups assumes is a three-di-
mensional multivariate t-distribution. Hence, each
group’s marginal posterior probability distribu-
tion follows the generalized t-distribution, and the
95% credible intervals for the three groups turned
out to be the following:
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A: 45+£8.8; B: 52+9.0; and C: 60+8.8 (See
Figure 8).

At another medical facility called Y, ALT val-
ues were measured for the three groups D, E, and
F, whose mean values resulted in 54, 68, and 76,
respectively.

The secondary form of the three-dimension-
al-multivariate t-distribution follows the F distri-
bution, F (3,15). The F value for the mean value
at the facility Y was 6.9, which exceeds the 99%
highest density region (iii-3). In consequence,
with the credible level of 99%, it was inferred
that the mean ALT values between patient groups
at the two facilities were different (See Figure 9).

Example 5:

Two kinds of clinical tests G and H, each of
which with a bivariate normal distribution, were
conducted with a subject group composed of 10
patients. Without prior information, sample cor-
relation coefficient calculated from the observed
values resulted in 0.34. The analyses in (iv-1) re-
vealed that the marginal posterior distribution of
the correlation coefficient assumed an asymmet-
ric curve, and the credible level (p-value) that the
correlation coefficient for G and H falling some-
where between 0.4 and 0.6 was 26 percent (Figure
10).
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Figure 1. Example of Data Entry Interface. 16 types of Bayesian inferences are
available in B.I.T. When one Bayesian inference is selected, the screen
corresponding to the selected Bayesian inference is launched. The de-
sign of the interfaces is individually different for each Bayesian infer-
ence. The screen size is up to 1035 x 768 pixels. “JPN/EN” button
changes the screen notation Japanese to English. As numerical values
are set ( > ), the graph curves of the posterior or prior probability dis-
tribution moves and deforms ( = ) sequentially, automatically, and the
posterior or prior probability is displayed ( ] ) simultaneously.
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Figure 2. Marginal posterior probability distribution of sample means with an un-
known normal distribution.
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unknown normal distribution.
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Inference of variance ratio (02"2/61"2) on two normal populations. N1{u1, 6*2) and N2(u2, 0" 2) : Normal distribution, 1 and p2 mean, o1*2 and 62*2: variance) B
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Figure 4. Assessing the homogeneity of variance from the posterior distribution of
the variance ratio between a new drug and an old drug.
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groups, not assuming the possibility of equal variance.
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Evaluation of the equality of variances among three normal populations, 0142, 02*2, and a3°2 :
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Figure 6. Making an inference about the homogeneity of variance among the
three groups (A, B, C) composed of patients at three clinical depart-
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Figure 9. Making an inference about the mean values of two groups (A, B, C) and
(D, E, F).



Running head: B. I. T. -Development of a dynamic visualization tool for Bayesian inference on normal distributions—

Inference on the correlation coefficient of bivariate normal distributions
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Figure 10. Making an inference about correlation coefficient of two variables that
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Discussion

1. Characteristic features of B. I. T. and compari-
son with other visualization systems for probabil-
ity distributions

First Bayes can be cited as a software program
that performs Bayesian inference on many proba-
bility distributions including normal distributions
[14]. With it, it is also possible to display graphi-
cal curves on the PC screen. However, unlike B. 1.
T., it does not have a function that allows the user
to dynamically change the graphical curves that
have already been displayed. Furthermore, First
Bayes has a complicated installation procedure.
B. I. T. can easily be installed through interactive
means.

SOCR [15] is an example of educational com-
puter programs that enable the user to visualize
probability distributions. SOCR has a function
called “SNAPSHOT” by which the user can print
out the images on the monitor screen. Similarly,
B. I. T. has a “SNAPSHOT” function which is
supported by the “Print” button on the screen.
However, as of 2018, the visualization function of
Bayesian statistics has not been added to SOCR.

34

Although First Bayes and SOCR have a function
for the operator to import data sets, it is consid-
ered that the data import function is difficult to
express the Bayesian updating since, in Bayesian
statistics, observed data are constantly updated.
B. I. T. enables the user to enter numerical values
quickly with, e.g., a slide bar and is user-friendly.
The dynamic change of graphical curves in B. L.
T. facilitates the user to get an intuitive grasp of
Bayesian updating.

2. Availability of B. I. T.

It is essential to heed that the applicability of
Bayesian inference has prerequisite conditions:
that is, each observed value must be independent
of one another, or the condition of exchangeabili-
ty must be fulfilled. In addition, if the sample size
were large enough to allow statistical tests based
on non-Bayesian probability and/or frequentist
theories, the need for Bayesian inference would
be diminished. As above descriptions illustrate,
it is critical to comprehend the prerequisites for
Bayesian inference, before applying the approach
with this software program. In biostatistics, nor-
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mal distributions are assumed in many cases, [16]
and, similarly, the majority of statistical analyses
in many fields assume normal distributions. Nev-
ertheless, as Tango [17] reported, of all clinical
tests, many blood tests in particular are known
to assume normal or lognormal distributions.
Although this software program does not have a
function for lognormal distributions [18], the pos-
sibility for adding this feature to the program in
the future is certainly recognized by the authors.
Furthermore, when learning Bayesian statistics
with this software, it is required that the user
acquire knowledge in terms of the principles of
Bayesian inference and concomitant formulae,
along with learning how to operate the interface.

3. Issues and future plans
Limitations in graphical displays

Since displaying joint probability density func-
tions is rather intricate and entails difficulties, B.
I. T. allows the user to display each peripheral
probability distribution. It is important to note
that the issue to be dealt with in the future—if B.
I. T. were to incorporate the function to display
joint probability density function curves—is to
make the graphical displays as easily comprehen-
sible as possible. For example, the possibility for
a three-dimensional display of a graphical curve
might be considered.

4. Numerical calculation methods

As seen in the results, the software program
uses approximations for some of the probabili-
ty distributions and integral calculations. With
regard to these, the program would require im-
provement in precision and accuracy in numerical
calculations, which is an area in which future pro-
gress is expected.

5. This software’s possibility of expansion in the
future

The programming language used to develop
this software has been extended in recent years

to enable the use of other languages such as R
and Python. It is expected that it will be possible
in the future to use the interface of this software
program in conjunction with other languages for
applied numerical calculations.

6. Evaluation of the effectiveness of B. I. T.

B. I. T. requires continued improvements so
that its effectiveness in facilitating the compre-
hension of Bayesian inference ameliorates along-
side. For example, by collecting user feedback
and conducting a questionnaire survey on learn-
ers’ opinions, the program can be evaluated in
areas of how the software has improved in ease of
use, the level of advancement in terms of Bayes-
ian statistics, and the level of comprehension in
mathematical formulae as well as applications.
They will be reflected in the improvement of B. 1.
T.
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