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Abstract
　Passive limb movement and mechanical tactile 
stimulation of the skin can modulate corticospinal 
excitability. For example, repetitive passive finger 
movement at 5.0 Hz for 10 min reduces corticos-
pinal excitability for 15 min after passive move-
ment. However, corticospinal excitability increas-
es when the subject pays attention to the passive 
movement of the finger. And mechanical tactile 
stimulation of the fingertip can increase or de-
crease corticospinal excitability, depending on the 
stimulation patterns used. For example, 20 min of 
repetitive simple tactile stimulation decreases cor-
ticospinal excitability, whereas repetitive complex 
tactile stimulation increases it. In addition, follow-
ing repetitive complex tactile stimulation, motor 
function improves. In this review, we focus on 
cortical activity following passive movement and 
mechanical tactile stimulation and changes in cor-
ticospinal excitability after repetitive passive 
movement and mechanical tactile stimulation. 

Introduction
　Our research group is investigating cortical ac-

tivities and corticospinal excitability following 
voluntary movement [1-11], passive movement 
[2, 3, 12-19], peripheral nerve stimulation [20-28], 
mechanical tactile stimulation [29-33], mo-
tor-point stimulation [4], water immersion [34-
37], aerobic exercise [38-43], and noninvasive 
transcranial electrical brain stimulation [3, 21, 44-
61] using electroencephalography (EEG), magne-
toencephalography (MEG), transcranial magnetic 
stimulation (TMS), and near-infrared spectrosco-
py. In this review, we describe the effects of pas-
sive movement and mechanical tactile stimulation 
on corticospinal excitability.

Cortical Activation Following Passive Finger 
Movement
　Numerous studies have measured brain activity 
following passive movement using functional 
magnetic resonance imaging (fMRI) and positron 
emission tomography (PET) to reveal that passive 
movements without motor commands activate not 
only the primary somatosensory cortex (S1) but 
also the primary motor area (M1), supplementary 
motor area (SMA), posterior parietal cortex (PPC), 
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lowing passive movements. In a previous study, 
we recorded SEFs following active and passive 
finger movements with a multiple dipole analysis 
system to examine the detailed time course for 
cortical activity and source localizations [2]. Con-
sistent with earlier studies, two peaks of the MEG 
response associated with passive movement were 
recorded between 30 and 100 ms after the onset of 
movement. Figure 1 presents the resulting isocon-
tour maps over the left hemisphere at 34, 89, and 
121 ms and over the right hemisphere at 140 ms 
after the onset of active and passive movements. 
The earliest and second components showed peaks 
at approximately 36 and 86 ms after the onset of 
passive movement. The ECD of the earliest com-
ponent was estimated to be in area 4, and the ECDs 
of the second component were estimated to be in 
area 4, the SMA, the PPC over the hemisphere 
contralateral to the movement and in S2 of both 

and bilateral secondary somatosensory areas (S2) 
[62-67]. However, unlike MEG, PET and fMRI do 
not offer sufficient temporal resolution to elucidate 
the time course of activity in these cortical areas.
　Some studies have used MEG systems to inves-
tigate the somatosensory evoked fields (SEFs) that 
accompany passive movement [68-72]. For exam-
ple, Xiang et al. [72] identified four SEF compo-
nents with peak latencies of 20, 46, 70, and 119 ms 
following the onset of passive finger movement. 
Several researchers have reported that the large 
SEF component observed following passive 
movement lasted for a long duration, with two 
peaks between 30 and 100 ms after the onset of 
movement [68-70]. The equivalent current dipoles 
(ECDs) of these two components were located in 
area 3b [68], area 4 [69], and areas 3b and 4 [70, 
72]. However, many MEG studies have shown no 
evidence of activity in the SMA, PPC, or S2 fol-

Figure 1.  Isocontour maps following passive movement [2]. 

Isocontour maps over the left hemisphere at 34, 89, and 121 ms over the right hemisphere at 140 ms 
after the onset of active A) and passive B) movements in a representative subject. Red areas indicate 
magnetic flux exiting the head and blue areas indicate flux entering the head.



85

Niigata Journal of Health and Welfare Vol.19, No.2

whereas Mace et al. [73] reported that RPMs of 
the wrist for 60 min at an average frequency of 1.0 
Hz increased the MEP; Lotze et al. and McDon-
nell et al. observed no changes in M1 excitability 
after 30 min of RPM [74, 75]. Table 1 summarizes 
six studies that investigated MEP changes associ-
ated with RPM. The differences in M1 excitability 
among the studies may have been influenced by 
differences in various stimuli such as the duration 
or speed of movement, presence or absence of a 
duty cycle of repeated movement and rest, and the 
degree of active attention given to the movement 
by the participant.

To determine the factors that influence M1 ex-
citability, we first investigated the effect of passive 
movement speed on M1 excitability after 10 min 
of RPM [19]. We applied RPMs of different fre-
quencies to examine whether movement frequen-

hemispheres (Figure 2A). The peak latency of 
each source activity was obtained in the range of 
54-109 ms in the SMA, 64-114 ms in the PPC, and 
84-184 ms in the S2 (Figure 2B).

 Cortical Excitability After Repetitive Passive 
Movements
　In the field of rehabilitation, repetitive volun-
tary or passive movements are widely used to en-
hance muscle strength, improve range of motion, 
and promote motor learning or motor function in 
patients who have, for example, suffered from a 
stroke. Motor-evoked potentials (MEPs), which 
indicate corticospinal excitability, induced by sin-
gle-intensity TMS temporarily decrease or in-
crease after repetitive passive movements (RPMs). 
Miyaguchi et al.[3] reported that RPMs of the in-
dex finger for 10 min at 0.5 Hz reduced the MEP, 

Figure 2.  Cortical activities following passive movement [2].
A) Equivalent current dipoles (ECDs) following passive movement overlapped on the magnified 
brain of a representative subject. In this subject, the ECDs were estimated at the primary 
sensorimotor area (dipole 1), supplementary motor area (SMA, dipole 2), posterior parietal cortex 
(PPC, dipole 3), and contralateral secondary somatosensory cortex (cS2, dipole 4). 
B) Time courses of averaged source activity following active and passive finger movements using 
brain electrical source analysis. “Active” shows the cortical activities at area 4 (n = 13) following 
active movement. “Passive -1, -2, -3, -4, and -5” shows the cortical activities in area 4 (n = 13), 
area 6 (n = 12), posterior parietal cortex (n = 7), contralateral secondary somatosensory cortex 
(S2, n = 7), and ipsilateral S2 following passive movement (n = 7), respectively. 
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The right index finger was passively abducted and 
adducted for 10 min at 0.5, 1.0, 3.0, and 5.0 Hz. 
RPMs at 0.5 and 1.0 Hz both resulted in MEPs that 
were decreased relative to the baseline for 2 min, 
whereas 5.0-Hz RPMs reduced MEPs for 15 min; 
however, 3.0-Hz RPMs resulted in no change in 
MEPs (Figure 4). No F-wave changes were ob-
served following any of the RPM interventions. 
Next, we used the paired-pulse TMS technique to 
investigate whether RPMs modulated the cortical 

cy contributed to the modulation of M1 excitabili-
ty using a custom-made device comprising a 
controller (Figure 3A) to set the movement veloc-
ity and range and a motor device to deliver the set 
passive movement sequence (Figure 3B). The 
movement device comprised a plastic plate, rotat-
ing plate, and stepper motor. Subjects placed their 
right palms on the plastic plate, aligning the center 
of the metacarpophalangeal joint of the right index 
finger to the rotary shaft of the motor (Figure 3C). 

Table 1.  Summary of studies investigating changes in motor-evoked potentials (MEP) after repetitive 
passive movements.

Duration
(min)

Number of
movements

Velocity 
(degree/sec)

Joint of
movement

Range of
movement

Duty
cycle

Attention MEP

Mace [73] 60 1800 120 wrist -45 ⇔ 45 + + increase

Lotze [75] 30 300 309 wrist 0 ⇔ 55 + + ±

Miyaguchi [3] 10 300 20 index 0 ⇔ 20 － － decrease

Sasaki [19] 10 300 20 index 0 ⇔ 20 － － decrease

10 600 40 index 0 ⇔ 20 － － decrease

10 1800 120 index 0 ⇔ 20 － － decrease

10 3000 200 index 0 ⇔ 20 － － decrease

Otsuka [15] 10 300 15 index -15 ⇔ 0 － － decrease

10 300 15 index 0 ⇔ 15 － － decrease

10 150 15 index -15 ⇔ 15 － － decrease

10 300 15 index 15 ⇔ 30 － － decrease

Tsuiki [12] 10 600 40 index 0 ⇔ 20 － － decrease

10 240 40 index 0 ⇔ 20 + － ±

10 600 100 index 0 ⇔ 20 + － decrease

30 1800 40 index 0 ⇔ 20 － － decrease

30 720 40 index 0 ⇔ 20 + － decrease

10 240 40 index 0 ⇔ 20 + + increase

10 240 40 index 0 ⇔ 20 + － ±

Notes: “Index” refers to index finger. Duty cycle + and – refer to the presence or absence, respectively, of a duty cycle, including rest periods. 
Attention + and – refer to attention being given or not given, respectively, to the joint being moved. “ ± ” indicate unchanged MEP.
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inhibitory circuit. We measured short interval in-
tracortical inhibition (SICI) before and after 1.0, 
3.0, and 5.0-Hz RPMs using paired-pulse TMS 
with an interstimulus interval of 3 ms. Both 1.0-
Hz and 5.0-Hz RPMs resulted in an increase in 
SICI compared with that at baseline. These results 
suggest that M1 excitability decreases after RPM 
in a manner that depends on the movement fre-
quency, possibly through frequency-dependent 
enhancement of the cortical inhibitory circuit in 
the M1. We next examined the influence of the 
range of passive movement (the extension ampli-
tude of the muscle) on M1 excitability [15]. The 
index finger was passively moved from 15° ab-
duction to 15° adduction, 15° abduction to 0°, 0° 

to 15° adduction, and 15° adduction to 30° adduc-
tion, with each movement at 15°/s for 10 min. 
MEPs and F-waves were measured before and af-
ter each RPM. The amplitudes of the MEPs signif-
icantly decreased after all the RPMs but the 
F-wave amplitude remained stable. These results 
suggest that the range of passive movement does 
not markedly influence the magnitude of the MEP 
decline after RPMs.
　In another study involving peripheral electric 
stimulation, intermittent stimulation with a duty 
cycle of repeated stimulation and rest resulted in 
significantly increased corticospinal excitability 
[76]. Additionally, corticospinal excitability was 
shown to significantly decrease with continuous 

Figure 3.  The passive movement control device [19].
A) The main device controls the velocity and range of movement. B), C) The secondary device 
produces repetitive passive movements of the right index finger.
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These findings suggest that attention to the stimu-
lated side during an intervention increases corti-
cospinal excitability. Therefore, we assessed the 
influence of paying attention to passive movement 
on corticospinal excitability and found that when 
attention was paid to the moving finger during 
RPM, corticospinal excitability increased, where-
as corticospinal excitability did not change under 
conditions where no attention was directed to the 
passive finger movements (Figure 5) [12].

theta burst stimulation but increase when the theta 
burst stimulation was intermittent [77]. These 
findings suggest that continuous and intermittent 
interventions with duty cycles of repeated stimuli 
and rest have different effects on corticospinal ex-
citability. Therefore, we examined the effect of the 
presence or absence of a duty cycle for the RPM 
on corticospinal excitability. The results confirmed 
that a decline in corticospinal excitability does not 
depend on the presence or absence of the duty cy-
cle [12].
　Attention is closely related to cortical excitabil-
ity. For example, during paired associative stimu-
lation interventions, corticospinal excitability sig-
nificantly increased when attention was directed to 
the stimulated side but there was no change when 
focusing on the other hand. It was also reported 
that SICI decreased and corticospinal excitability 
increased when attention was paid to the target 
hand during a movement task [78], repetitive TMS 
[79], or vibration stimulation [80]; however, there 
was no change in corticospinal excitability when 
there was no attention paid to the stimulated hand. 

 Cortical Activation Following Mechanical Tac-
tile Stimulation

Tactile input from the periphery activates sever-
al cortical areas. The primary somatosensory cor-
tex (S1) in the postcentral gyrus performed the 
initial cortical processing of the somatosensory 

Figure 4.  Effects of RPM frequency on MEP am-
plitudes [19].

The effect of the frequency of repetitive passive 
movement (RPM) on MEP amplitudes. Time 
course of change in mean ± standard error MEP 
amplitudes for all subjects (n = 15) following 0.5, 
1.0, 3.0, and 5.0-Hz RPM.
＊p < 0.05 compared with the pre-value.

Figure 5.  MEP amplitude before and after the 
repetitive passive movement [12].

Motor-evoked potential (MEP) amplitudes before 
and after repetitive passive movements (RPMs) 
under three conditions. The MEP amplitude sig-
nificantly decreased at Post-0 and Post-5 com-
pared with Pre. Mean MEP amplitude (mean ± 
SE) at Pre, Post-0, Post-5, and Post-10. When 
paying attention, the MEP amplitude significant-
ly increased at Post-10 compared with Pre (p < 
0.01). In contrast, when not paying attention and 
in the control condition, there was no significant 
change in MEP amplitude before and after the in-
tervention. 



89

Niigata Journal of Health and Welfare Vol.19, No.2

air puffs (pneumatic stimulation) [85, 86], brushes 
[87, 88], plastic pieces driven by airflow [89], and 
mechanical pins driven by piezoelectric actuators 
[32, 33] have been used to analyze the cortical ac-
tivity following nociceptive or non-nociceptive 
stimulation. Because laser and intra-epidermal 
stimulation can activate nociceptors of thin myeli-
nated A-delta fibers without stimulating tactile af-
ferent fibers, these stimulators are ideal for inves-
tigations of the nociceptive system. 

Pneumatic stimulation is a useful tool for re-
cording the SEF in response to face or lip stimula-

stimuli. The secondary somatosensory cortex (S2) 
is in the upper wall of the sylvian fissure. Several 
cortical imaging tools such as fMRI, PET, and 
MEG have provided unequivocal evidence of the 
activity in sensory processing areas such as S1 and 
S2. Compared with fMRI and PET, MEG has ex-
cellent temporal resolution and has been success-
fully used to analyze the temporal aspects of corti-
cal sensory information processing [81, 82]. In 
some MEG studies, intra-epidermal and transcuta-
neous electrical stimulation [83], YAG- or CO2-la-
ser stimulation [84], mechanical stimulation using 

Figure 6.  Tactile stimulator and stimulation parameter [33]. 

A) An array of four tiny plastic pins (2.4 × 2.4 mm) on the tactile stimulator was driven by piezoelectric 
actuators. The pins were each 1.3 mm in diameter and protruded to 0.8 mm. The distance between 
pins was set to 2.4 mm. B) Schema of a mechanical pin. C) The interstimulus interval was set to 
2000 ms, including 1000 ms of constant stimulus.
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Figure 7.  Representative whole-scalp SEF waveforms after the onset of tactile-on stimulation [33]. 

Representative whole-scalp SEF waveforms from a period of between 20 ms before and 2000 ms 
after the onset of tactile-on stimulation obtained from Subject 2. The recording period comprised 
1000 ms of constant stimulus and 1000 ms following the removal of the constant stimulus. 
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tile-off stimulation generated by the removal of a 
constant mechanical pressure (Figure 6) to acti-
vate SI and SII cortices using a 306-ch whole-head 
MEG system and a tactile stimulator driven by a 
piezoelectric actuator [33]. Consequently, promi-
nent SEFs from the contralateral hemisphere were 
recorded at 57.5 ms and 133.0 ms after the onset of 
tactile-on stimulation and at 58.2 ms and 138.5 ms 
after the onset of tactile-off stimulation (Figure 7). 
All ECDs were located in S1 (Figure 8A). Moreo-
ver, long-latency responses (168.7 ms after tac-
tile-on stimulation and 169.8 ms after tactile-off 
stimulation) were detected from the ipsilateral 

tion. However, the rise time for pneumatic stimu-
lation is relatively long (>10 ms); hence, the early 
phase of cortical activity cannot be measured as 
clearly as the responses generated by electrical 
stimulation. In contrast, the rise time for mechani-
cal pins driven by piezoelectric actuators is <1 ms 
and the stimulus is precise and consistent. There-
fore, this device is useful for investigating the ear-
ly time course of cortical activity following life-
like tactile sensation, tactile-off responses, and 
responses to multiple stimuli distributed over a 
region in sensory paradigms such as two-point 
discrimination. We investigated the effects of tac-

Figure 8.  ECD locations following tactile on-stimulation and off-stimulation [33]. 

The locations of the ECDs are superimposed on the same subject’s MR images. A) The contralateral 
hemisphere to the right finger stimulation. ECDs corresponding to the on-stimulation as well 
as off-stimulation were all located in SI. B) The ipsilateral hemisphere to the stimulation. ECDs 
corresponding to the on-stimulation and off-stimulation were observed in SII. The yellow circle and 
white box correspond to the on-stimulus and off-stimulus, respectively. 
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hemisphere. The ECDs of these signals were iden-
tified in the S2 (Figure 8B). The SEF waveforms 
elicited by the two tactile stimuli (tactile-on and 
tactile-off) with a mechanical stimulator were 
strikingly similar. These mechanical stimuli elicit-
ed both contralateral SI and ipsilateral SII activi-
ties. 

In addition, we investigated the effect of the 
number of mechanical pins and inter-pin distance 
on SEFs following mechanical stimulation [32]. 
SEFs were elicited through tactile stimuli with 1-, 
2-, 3-, 4-, and 8-pins using healthy participants. 
Tactile stimuli were applied to the tip of the right 
index finger. Prominent SEFs were recorded from 
the contralateral hemisphere approximately 54 ms 
(P50 m) and 125 ms (P100 m) after mechanical 
stimulation, regardless of the number of pins. 
ECDs were located in the S1. The source activities 
for P50 m and P100 m significantly increased in 
tandem with the number of pins for mechanical 

stimulation (Figure 9). Additionally, source activi-
ties significantly increased when the inter-pin dis-
tance increased from 2.4 to 7.2 mm. The number 
of stimulated receptors was considered to have 
increased with an increase in the inter-pin distance 
as well as an increase in the number of pins. These 
findings clarified the effect of the number of pins 
and inter-pin distance for mechanical stimulation 
on SEFs. 

 Cortical Excitability After Repetitive Tactile 
Stimulation

Prolonged and/or repetitive somatosensory 
stimulation, including electrical stimulation and 
tactile stimulation, may be useful rehabilitation 
tools because they reportedly modulate cortical 
and corticospinal excitability [90-92], motor func-
tion [93, 94], and sensory skills [95-97] in both 
healthy subjects and stroke patients [98-101]. For 
example, the MEP increased for 15 min following 

Figure 9.  Effect of the number of stimulation pins on cortical activities [32].
A) Grand averaged source waveforms across subjects elicited by each number of pins of 
mechanical stimulation. B) The mean source activities of each component were summarized to 
compare the source activities among the pin numbers for mechanical stimulation. 
＊1:  P50 m: 8-pins > 4-pins (p < 0.01), 3-pins (p < 0.01), 2-pins (p < 0.01), 1-pin (p < 0.01) 
＊2: P50 m: 4-pins > 2-pins (p < 0.05), 1-pin (p < 0.01)
＊3:  N100 m: 8-pins > 4-pins (p < 0.05), 3-pins (p < 0.01), 2-pins (p < 0.01), 1-pin (p < 0.01)
＊4: N100 m: 4-pins > 1-pin (p < 0.05) 
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electrical stimulation of the ulnar nerve for 2h 
[102]. Thirty minutes of vibration on the palm in-
creased corticospinal excitability for 2h [103]. In 
addition, mechanical stimulation for 3h was shown 
to decrease the two-point discrimination thresh-
old, while increasing S1 activity, with a corre-
sponding correlation observed between these ef-
fects [96, 97]. 

A previous study using tactile stimulation 
showed that cortical activity differed depending 
on the pattern of tactile stimulation. An fMRI 
analysis demonstrated that cortical activity de-
pends on the pattern of mechanical stimulation, 
and simple and complex mechanical stimulations 
activated S1, whereas complex mechanical stimu-
lations activated not only S1 but also the M1 [67]. 

Therefore, we investigated whether the effects of 
repetitive mechanical tactile stimulation on corti-
cospinal excitability [30, 31] and motor function 
[30] depend on different pin protrusion patterns. 
Two types of mechanical tactile stimulation were 
used: a repetitive global stimulus (RGS) was used 
to stimulate the finger using 24 pins installed on a 
finger pad and a sequential stepwise displacement 
stimulus (SSDS) was used to stimulate the finger 
by moving a row of six pins between the left and 
right sides on a finger pad (Figure 10). Mechanical 
tactile stimuli were applied to the right index fin-
ger for 20 min (stim on/stim off, 1s / 5s) at a fre-
quency of 20 Hz. MEPs were observed to be sig-
nificantly smaller after RGS intervention than pre 
intervention MEPs (Figure 11A); however, motor 

A) stimulus pins B) stimulus image E) Repetitive global stimulus (RGS) intervention

F) Sequential stepwise displacement stimulus (SSDS) intervention
C) intervention parameter

D) study protocol

Figure 10.  Mechanical tactile stimulation and stimulus protocol [30].
A) The mechanical tactile stimulator. Each pin was 1.3 mm in diameter and protruded to 0.8 mm. B) 
The mechanical tactile stimulator comprised 24 tiny plastic pins applied to the tip of the right index 
finger. C) Mechanical stimulation was applied for 20 min (stim on/stim off, 1 s /5 s) at a frequency of 
20 Hz. D) I-O curve and motor function were measured prior to intervention (PRE). Each mechani-
cal stimulation (either RGS or SSDS) was applied for 20 min. After mechanical stimulation (POST), 
the I-O curve and motor function were measured again. E) RGS intervention stimulated the index 
finger with 24 pins installed in the finger pad. F) SSDS intervention stimulated the finger by moving 
the row of six pins between the left and right sides on the finger pad. I-O curve (Input-Output curve), 
RGS (repetitive global stimulus), SSDS (sequential stepwise displacement stimulus)
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function using the grooved pegboard task re-
mained unchanged. After SSDS intervention, 
MEPs were significantly larger (Figure 11B) and 
motor function significantly improved compared 
with pre intervention values. Our results demon-
strate that mechanical tactile stimulation can mod-
ulate corticospinal excitability and motor function 
and that the effects of mechanical stimulation de-
pend on stimulation patterns.

Conclusion 
In this review, we summarized the cortical ac-

tivity and corticospinal excitability associated 
with passive movement and mechanical tactile 
stimulation. Corticospinal excitability following 
RPM is believed to be influenced by various fac-
tors, including the duration and velocity of the 

movement and the presence or absence of a duty 
cycle of repeated movement/stimulation and rest. 
Therefore, we performed several experiments in-
volving RPMs which showed that whether or not 
there was a duty cycle of repeated movement and 
rest, RPM resulted in a temporary decrease in cor-
tical excitability when no attention was paid to the 
passive movement but an increase in cortical ex-
citability when attention was directed at the move-
ment. Furthermore, we investigated the effects of 
mechanical tactile stimulation on corticospinal 
excitability and motor function. We found that re-
petitive simple mechanical stimulation decreased 
corticospinal excitability but did not change motor 
function, whereas complex mechanical stimula-
tion increased both corticospinal excitability and 
motor function. Collectively, repetitive mechani-

Figure 11.  Pre-to post-intervention changes in the Input-Output curve plotting the MEP amplitude 
(mean ± standard error of mean) [30].

A) In the RGS intervention, post hoc analysis showed a significant decrease in the MEP amplitude 
evoked by 110% RMT PRE compared with POST (p = 0.005). B) In the SSDS intervention, post 
hoc analysis showed a significant increase in the MEP amplitude evoked by 140% and150% RMT 
PRE compared with POST (140% RMT; p = 0.00057, 150% RMT; p =0.00078). 
RMT (resting motor threshold), PRE(prior to intervention), POST(after mechanical stimulation), I-O 
curve(Input-Output curve), RGS(repetitive global stimulus), SSDS(sequential stepwise displace-
ment stimulus)

A) repetitive global stimulus intervention B) sequential stepwise displacement stimulus intervention
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cal stimulation can modulate corticospinal excita-
bility and motor function and the effects of the in-
tervention depend on the pattern of stimulation. 
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