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Two-point discrimination (2PD) test reflects somatosensory spatial discrimination ability, but evidence on the relationship between
2PD and cortical gray matter (GM) volume is limited. This study aimed to analyze the relationship between cortical GM volume and
2PD threshold in young healthy individuals and to clarify the characteristics of brain structure reflecting the individual differences in
somatosensory function. 2PD was measured in 42 healthy (20 females) volunteers aged 20–32 years using a custom-made test system
that can be controlled by a personal computer. The 2PD of the right index finger measured with this device has been confirmed
to show good reproducibility. T1-weighted images were acquired using a 3-T magnetic resonance imaging scanner for voxel-based
morphometry analysis. The mean 2PD threshold was 2.58 ± 0.54 mm. Whole-brain multiple regression analysis of the relationship
between 2PD and GM volume showed that a lower 2PD threshold (i.e. better somatosensory function) significantly correlated with
decreased GM volume from the middle temporal gyrus to the inferior parietal lobule (IPL) in the contralateral hemisphere. In
conclusion, a lower GM volume in the middle temporal gyrus and IPL correlates with better somatosensory function. Thus, cortical
GM volume may be a biomarker of somatosensory function.
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Introduction
Somatosensory stimulation induces activity in various
cortical areas, including the primary somatosensory cor-
tex (S1), secondary somatosensory cortex (S2), posterior
parietal cortex, and primary motor cortex (Inui et al.
2004). In addition to these areas, the premotor cortex,
supplementary motor cortex, presupplementary motor
cortex, dorsolateral prefrontal cortex (DLPFC), inferior
frontal gyrus (IFG), insular cortex, inferior parietal
lobule (IPL), supramarginal gyrus, angular gyrus, superior
parietal lobule, interparietal sulcus (IPS), hMT/V5,
temporoparietal junction (TPJ), and cerebellum are also
activated during somatosensory discrimination tasks
(Gao et al. 1996; Van Boven et al. 2005; Kitada et al.
2006; Pleger et al. 2006; Li Hegner et al. 2010; Wacker
et al. 2011; van der Zwaag et al. 2013; van Kemenade
et al. 2014; Li Hegner et al. 2015; Sarasso et al. 2018). The
brain structure changes with training and with long-
term experience. For example, the gray matter (GM)
volume of the hMT/+V5 area, occipito-parietal areas, and

dorsal parietal cortex increases with juggling practice
(Draganski et al. 2004; Boyke et al. 2008; Gerber et al.
2014; Sampaio-Baptista et al. 2014). Meanwhile, those of
the lingual gyrus and IFG increase with a prolongation of
flight time in pilots (Qiu et al. 2021). Furthermore, specific
areas increase in musicians (Gaser and Schlaug 2003),
typists (Cannonieri et al. 2007), and athletes (Bezzola
et al. 2011; Schlaffke et al. 2014). Moreover, the GM
volume of the posterior hippocampus is increased and
that of the anterior hippocampus is decreased in taxi
drivers (Maguire et al. 2000) and dancers (Hufner et al.
2011). Additionally, shadowing, reading, and cognitive
training reduce GM volume in specific areas (Takeuchi
et al. 2011a, 2011b; Maruyama et al. 2018; Takeuchi et al.
2021). Collectively, these findings indicate that it may
be possible to predict somatosensory function from GM
volume of cortical areas involved in somatosensory infor-
mation processing; however, the relationship between
somatosensory function and GM volume in untrained
healthy individuals has not been clarified.
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Two-point discrimination (2PD) has been widely used
to evaluate spatial acuity both clinically and in research
on somatosensory perception. Several cortical areas,
such as the IPS, IPL, supramarginal gyrus, anterior cingu-
late cortex, prefrontal gyrus, IFG and S1, anterior insula,
and cerebellar vermis, are involved in 2PD (Akatsuka
et al. 2008). Further, 2PD thresholds are declined (sensory
function is improved) when transcranial alternation
current stimulation is applied to the posterior parietal
cortex (Yokota et al. 2021). Interestingly, Schmidt-Wilcke
et al. 2018 reported that people with lower 2PD thresholds
(better sensory function) have larger GM volumes in
the thalamus and S1 and that repetitive electrical
stimulation to the fingertip increases the volume of the
parietal operculum and improves 2PD function. However,
the relationship between 2PD and cortical GM volume
has only been reported by Schmid-Wilcke et al., and thus,
the reproducibility needs to be verified.

This study aimed to analyze the relationship between
cortical GM volume and 2PD threshold in young healthy
individuals and to clarify the brain structural character-
istics reflecting the individual differences in somatosen-
sory function.

Material and methods
Study design and participants
This voxel-based morphometry (VBM) study recruited
42 healthy volunteers (22 male and 20 female) aged 20–
32 years (mean ± standard division [SD]: 22.1 ± 2.2 years).
None of the participants reported taking any drugs
or medications which could affect central nervous
system function. Handedness was assessed using the
Edinburgh Handedness Inventory (39 right-handed, 3
left-handed, mean ± SD: 73.2 ± 44.6) (Oldfield 1971). This
study was approved by the Ethics Committee of Niigata
University of Health and Welfare and was conducted
in accordance with the Declaration of Helsinki. All
participants provided written informed consent before
participation.

2PD measurement
The 2PD of the right index finger was measured with the
participants seated in a resting position on a chair with a
backrest. The right shoulder and elbow joints were placed
in the slightly flexed position, whereas the forearm was
positioned in a pronated position. The participants were
instructed to relax and look at a fixed point approxi-
mately 1.5 m in their front. A custom-made 2-point tac-
tile stimulator (Takei-kiki, Niigata, Japan), which allows
detailed control of stimulation conditions (pin elevation
speed, stimulation depth, and pin distance) by a per-
sonal computer, was used to measure 2PD threshold. The
stimulus conditions were set at the following parameters
based on the optimal measurement conditions of 2PD
obtained in our previous study (Yokota et al. 2020): speed,
10.0 mm/s; penetration depth, 1.0 mm; and presentation
time, 1.0 s. We have previously confirmed that the 2PD

measured using this device shows good reproducibility
(Yokota et al. 2020). 2PD measurements consisted of 16
blocks, and a total of 10 types of stimuli to the right index
finger pad, including 1 point (0 mm between stimulus
pins) or 2 points (9 types of stimuli ranging from 1 to
5.0 mm at 0.5-mm interpin intervals), were presented
randomly in each block. We explained that the 2 points
should only be considered if they could be clearly identi-
fied as 2 points, whereas other vague stimuli and 1 point
should be defined as 1 point. The participants were also
instructed to respond by pushing the button held in their
left hand when they recognized the stimulus. To analyze
the data, the distance between the pins and the correct
answer rate were plotted with a logistic regression line
fitted using MATLAB (Matlab R2020a, MathWorks, Nat-
ick, MA). Thresholds at the correct rates of 50% as 2PD
threshold were calculated based on the psychophysical
curve using logistic regression analysis.

Magnetic resonance imaging data acquisition
Magnetic resonance data were acquired using a 3 T
Vantage Galan magnetic resonance imaging (MRI)
scanner (Canon Medical Systems, Tochigi, Japan) with
a 32-channel head coil (QD coil, 32ch head SPEEDER,
Atlas SPEEDER head/neck). The head was fixed using a
head position pad to prevent motion artifacts. Moreover,
headphones were used to reduce discomfort from
loud noises. Anatomical images were acquired using
a T1-weighted 3D magnetization-prepared rapid gra-
dient echo sequence with the following parameters:
inversion time = 900 ms, repetition time = 5.8 ms, echo
time = 2.7 ms, flip angle = 9◦, slice thickness = 1.2 mm,
field of view = 23 × 23 cm2, scan matrix = 256 × 256,
number of slices = 160, and slice gap = nongap.

Structural analysis
Image preprocessing and VBM were performed using
SPM12 (Statistical Parametric Mapping, Wellcome
Department of Imaging Neuroscience Group, Lon-
don, United Kingdom; http://www.fil.ion.ucl.ac.uk/spm)
implemented in Matlab R2020a (MathWorks). The T1-
weighted images used for the analysis were visually
checked for motion artifacts. The AC-PC line was
corrected automatically using the Matlab script for
automatic AC-PC setting (http://www.nemotos.net/?
p=17). The T1-weighted images were segmented into
GM, white matter, and cerebrospinal fluid after bias
correction (bias regularization: light; bias full-width at
half-maximum [FWHM] cut-off: 60 mm). The warping
functions generated by the Diffeomorphic Anatomical
Registration Through Exponentiated Lie Algebra (DAR-
TEL) algorithm were used to spatially normalize to
Montreal Neurological Institute space and modulate
them using Jacobian determinants derived from spa-
tial normalization (Ashburner 2007). The customized
template image for DARTEL was created based on 42
participants. We applied 8-mm FWHM Gaussian kernel
for spatial smoothing in the analysis. The sum of the
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Fig. 1. Results of 2PD measurements. (a) Mean psychophysical curve in 2PD measurement for all participants. (b) Individual 2PD threshold for all
participants.

total GM and white matter volumes was calculated as
the total brain volume.

Statistical analysis
First, regression analysis was performed using the mul-
tiple regression model implemented in SPM12 to iden-
tify the brain regions associated with the independent
variables (2PD). In the regression model, total brain vol-
umes, age, and handedness were entered as covariates.
The correction of the multiple comparison was carried
out as follows: statistical parametric maps set thresh-
olds at P < 0.001 (uncorrected voxel level). The whole-
brain analysis was corrected for multiple comparisons
(P < 0.05, correcting at cluster level, using family-wise
error [FWE] correction). Voxel-by-voxel FWE corrections
of statistical results are often too conservative for whole-
brain analyses. Therefore, when no significant associa-
tions were found, P < 0.001 (uncorrected voxel level) and
expected voxels per cluster (k) > 89 contiguous voxels
were used to reduce the probability of a type II statistical
error. MRIcron software (www.people.cas.sc.edu/rorden/
mricron) was used to illustrate VBM results.

Second, the regional GM volume of each brain region
was calculated using the mask image created with the
Automatic Anatomical Labeling (AAL) atlas (Tzourio-Ma-
zoyer et al. 2002) included in the WFU_PickAtlas software
version 3.0.5 (NeuroImaging Tools & Resources Collab-
oratory, https://www.nitrc.org/projects/wfu_pickatlas/).
All 116 mask images (54 images in the right and left
hemispheres and 8 images in the cerebellar vermis) were
created, and GM volume in each region was normalized
to each participant’s total brain volume. The relationship
between 2PD threshold and GM volume in each cortical
region was analyzed with Pearson correlation analysis
using IBM SPSS statistics version 24.0 (IBM, New York).
Statistical significance was set at a P value of <0.01.

Results
The sigmoid curve of the 2PD test is shown in Fig. 1a. The
2PD threshold was 2.58 ± 0.54 mm (mean ± SD, Fig. 1b).
There were no sex differences in 2PD thresholds (male:
2.65 ± 0.58 mm; female: 2.50 ± 0.50 mm). The left mid-
dle temporal gyrus to the IPL was positively correlated
with the 2PD threshold. The lower the GM volume in
this area, the lower the 2PD threshold (better sensory
function) (P < 0.05, correcting at cluster level, using FWE
correction, Table 1 and Fig. 2). Meanwhile, a region in
the left cerebellum was found to correlate negatively
with the 2PD threshold, although it could not endure
multiple corrections (P = 1.51E-05, uncorrected, Table 1
and Fig. 2).

Table 2 shows the results of correlation analysis
between the 2PD threshold and GM volume in each
regional area, which were calculated using the mask
image created with the AAL atlas. Overall, 6 of the
116 regions showed a positive correlation with the 2PD
threshold (P < 0.01); that is, the lower the 2PD threshold
(better sensory function), the lower the GM volume.
These 6 regions were the left middle temporal gyrus, left
superior frontal gyrus (dorsolateral), left IPL, left primary
motor cortex, right middle frontal gyrus, and right middle
temporal gyrus (Table 2 and Fig. 3). Meanwhile, the left
cerebellar lobule VIII, right cerebellar crus II, and right
cerebellar lobule VII showed a negative correlation with
the 2PD threshold (P < 0.01); that is, the lower the 2PD
threshold (better sensory function), the higher the GM
volume (Table 2 and Fig. 3).

Discussion
Evidence on the relationship between 2PD and cortical
GM volume is limited. The results of whole-brain analysis
in the current study showed that a low 2PD threshold
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Table 1. Cortical regions correlated with the 2PD threshold.

Cluster level Peak level MNI coordinates

p KE p T Z p x, y, z (mm)

Anatomical region (FWE) size (unc) value score (unc) x y z

Positivea Lt. middle temporal gyrus 0.00 1679.0 0.00 4.759 4.177 0.000 −56 −50 12
Lt. IPS (hIP1)-IPL 4.702 4.136 0.000 −42 −53 38
Lt. IPL 4.668 4.112 0.000 −56 −66 32

Negativeb Lt. cerebellum (crus I) 0.87 88.0 0.29 4.174 3.754 0.000 −53 −59 −30

Lt, left; unc, uncorrected; MNI, Montreal Neurological Institute. aP < 0.05, correcting at cluster level, using FWE correction. bP < 0.001 (uncorrected voxel level)
and expected voxels per cluster (k) > 89 contiguous voxels.

Fig. 2. Association between 2PD threshold and GM volume based on VBM analysis. Clusters in green indicate a significant positive association with
2PD threshold; that is, the lower the GM volume, the lower the 2PD threshold (higher somatosensory function). Clusters are focused in the left middle
temporal gyrus and IPL (P < 0.05, correcting at cluster level using FWE correction). Clusters in red indicate a negative association; that is, the higher
the GM volume, the lower the 2PD threshold (higher somatosensory function). Clusters are focused in the left cerebellum crus I (P < 0.001, uncorrected
voxel level, with expected voxels per cluster, k,> 89 contiguous voxels).

(i.e. better sensory function) was associated with lower
GM volume from the middle temporal gyrus to the IPL in
the contralateral hemisphere. Furthermore, analysis of
ALL labels revealed that GM volumes in the contralat-
eral middle temporal gyrus, IPL, superior frontal gyrus
(dorsolateral), primary motor cortex, ipsilateral middle
temporal gyrus, and middle prefrontal cortex were sig-
nificantly correlated with the 2PD threshold, indicating
that the better the sensory function, the lower the GM
volume. The current study findings are useful to further
elucidate the relationship between individual differences
in somatosensory function and brain structure and may
contribute to understanding the characteristics of indi-
viduals with sharp somatosensory functions.

The middle temporal gyrus and IPL showed the
strongest positive correlation with the 2PD threshold;

that is, the better the performance, the smaller the GM
volume in these regions. This may be due to the presence
of the hMT+/V5 area and the TPJ in the posterior superior
portion of the middle temporal gyrus. The hMT+/V5 area,
which has been reported to be active during dynamic
tactile stimulation, contributes to the performance of
somatosensory function (Summers et al. 2009; Wacker
et al. 2011; van Kemenade et al. 2014). In addition,
the TPJ is not only activated during somatosensory
discrimination tasks (Van Boven et al. 2005) but has
also been reported to be associated with attentional
function (Geng and Vossel 2013; Dugue et al. 2018). Given
that attention alters the activity in the S2 cortex, which
is involved in somatosensory information processing
(Hsiao et al. 2002), it is possible that the participants
with good somatosensory performance also had better
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Table 2. Brain regions with significant correlation between GM volume and 2PD threshold (n = 116 brain regions).

Anatomical regionb Left hemisphere Right hemisphere

r P r P

Central region
Precentral gyrus 0.394 a 0.0099 0.080 0.6142
Postcentral gyrus 0.117 0.4600 0.305 0.0493
Rolandic operculum 0.206 0.1905 0.219 0.1633

Frontal lobe
Lateral surface

Superior frontal gyrus, dorsolateral 0.415 a 0.0063 0.377 0.0138
Middle frontal gyrus 0.292 0.0604 0.427 a 0.0048
IFG, opercular part 0.103 0.5179 0.076 0.6305
IFG, triangular part −0.010 0.9513 0.083 0.6027

Medial surface
Superior frontal gyrus, medial 0.255 0.1032 0.115 0.4665
Supplementary motor area 0.127 0.4225 0.199 0.2058
Paracentral lobule 0.278 0.0745 0.185 0.2419

Orbital surface
Superior frontal gyrus, orbital part 0.069 0.6644 −0.059 0.7114
Superior frontal gyrus, medial orbital 0.001 0.9974 −0.026 0.8679
Middle frontal gyrus, orbital part −0.047 0.7694 −0.089 0.5760
IFG, orbital 0.073 0.6438 0.249 0.1117
Gyrus rectus 0.192 0.2238 0.038 0.8129
Olfactory cortex 0.189 0.2303 0.161 0.3090

Temporal lobe
Lateral surface

Superior temporal gyrus 0.274 0.0787 0.372 0.0154
Middle temporal gyrus 0.545 a 0.0002 0.407 a 0.0074
Inferior temporal gyrus 0.329 0.0334 0.349 0.0233
Heschl gyrus 0.120 0.4476 0.190 0.2269

Parietal lobe
Lateral surface

Superior parietal gyrus 0.331 0.0325 0.326 0.0352
Inferior parietal gyrus 0.407 a 0.0074 −0.115 0.4668
Angular gyrus 0.378 0.0137 −0.040 0.8018
Supramarginal gyrus 0.044 0.7844 0.269 0.0847

Medial surface
Precuneus 0.115 0.4689 0.022 0.8892

Occipital lobe
Lateral surface

Superior occipital gyrus 0.131 0.4087 −0.070 0.6592
Middle occipital gyrus 0.105 0.5083 −0.045 0.7784
Inferior occipital gyrus 0.168 0.2887 0.044 0.7810

Medial and inferior surface
Cuneus −0.095 0.5506 −0.137 0.3886
Calcarine fissure and surrounding
cortex

−0.290 0.0626 −0.225 0.1525

Lingual gyrus 0.106 0.5055 −0.015 0.9265
Fusiform gyrus 0.101 0.5236 0.104 0.5128

Limbic lobe
Temporal pole: superior temporal
gyrus

0.139 0.3784 0.129 0.4151

Temporal pole: middle temporal gyrus 0.073 0.6473 0.291 0.0617
Anterior cingulate and paracingulate
gyri

0.276 0.0768 0.349 0.0237

Median cingulate and paracingulate
gyri

0.184 0.2439 0.253 0.1055

Posterior cingulate gyrus 0.278 0.0743 0.059 0.7093
Hippocampus 0.008 0.9614 0.102 0.5216
Para hippocampus gyrus −0.029 0.8532 0.154 0.3301

Insula
Insula −0.027 0.8647 0.129 0.4169

Subcortical gray nuclei
Amygdala −0.019 0.9073 0.073 0.6455
Caudate nucleus 0.002 0.9902 −0.004 0.9797

(Continued)
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Table 2. Continued.

Anatomical regionb Left hemisphere Right hemisphere

r P r P

Putamen −0.013 0.9342 −0.024 0.8793
Pallidum −0.029 0.8559 −0.107 0.4995
Thalamus 0.016 0.9191 −0.066 0.6790

Cerebellum
Hemisphere

Cerebellum crus I −0.369 0.0161 −0.243 0.1205
Cerebellum crus II −0.275 0.0774 −0.408 a 0.0074
Cerebellum III −0.050 0.7553 −0.182 0.2490
Cerebellum IV–V −0.109 0.4917 −0.204 0.1939
Cerebellum VI −0.146 0.3565 −0.187 0.2347
Cerebellum VII −0.377 0.0138 −0.394 a 0.0097
Cerebellum VIII −0.492 a 0.0009 −0.36 0.0194
Cerebellum IX −0.303 0.0514 −0.216 0.1704
Cerebellum X −0.187 0.2345 0.006 0.9683

Vermis
Vermis I–II 0.079 0.6177
Vermis III −0.190 0.2273
Vermis IV–V −0.234 0.1360
Vermis VI −0.171 0.2802
Vermis VII −0.141 0.3726
Vermis VIII −0.325 0.0358
Vermis IX −0.328 0.0342
Vermis X −0.163 0.3014

aP < 0.01. bEach brain region is calculated using the mask image created with the AAL atlas (Tzourio-Mazoyer et al. 2002).

attentiveness to stimulation. The IPS and angular gyrus,
located postero-inferiorly to the IPL, also play important
roles in attentional function (Rushworth and Taylor 2006;
Chechlacz et al. 2012) and perceptual decision-making
(Ploran et al. 2007; Tosoni et al. 2008; Ho et al. 2009;
Studer et al. 2014; Wu et al. 2021). The 2PD test requires
the test administrator’s judgment regarding to whether a
given stimulus should be allotted 1 or 2 points. Therefore,
the neural basis of perceptual decision-making may be
involved in the 2PD threshold. Moreover, the IPL, superior
frontal gurus (dorsolateral), and primary motor cortex
are also activated during somatosensory stimulation or
somatosensory discrimination tasks (Inui et al. 2004; Van
Boven et al. 2005; Kitada et al. 2006; Pleger et al. 2006;
Terumitsu et al. 2009; van Kemenade et al. 2014; Gomez
et al. 2021; Jung et al. 2021).

Regarding the relationship between GM volume and
performance, some reports indicate that training and
specific experiences increase GM volume in certain
regions, while others cause a decrease. For example,
mental arithmetic training decreases the GM volume
in the superior temporal gyrus and DLPFC (Takeuchi
et al. 2011b), while oral reading training decreases the
GM volume in the superior temporal gyrus (Takeuchi
et al. 2011a; Maruyama et al. 2018). Moreover, lower GM
volumes in specific areas are reportedly associated with
better music perception (Hyde et al. 2007; Bermudez
et al. 2009) and higher concentration (Kanai et al.
2011). Furthermore, the GM volume in the inferior
temporal gyrus, middle temporal gyrus, and IPL has
recently been identified as being increased in autism

spectrum disorder with impaired attention (Cai et al.
2018; Kobayashi et al. 2020; Lukito et al. 2020; Yaxu et al.
2020), and this has been attributed to brain overgrowth
(Kobayashi et al. 2020). Thus, lower GM volume is
reportedly associated with better performance. Further-
more, healthy individuals with higher rectal sensitivity
(lower threshold) to visceral pain reportedly have lower
GM volumes in the thalamus, insula, amygdala, and
cingulate gyrus (Elsenbruch et al. 2014). Moreover, a lower
threshold to thermal stimuli (more sensitive) denotes
a lower GM volume in the IPL, IPS, posterior cingulate
gyrus, and S1 (Erpelding et al. 2012). Consistent with
these reports, the current study found that the GM
volume of the cerebral cortex involved in somatosensory
information processing was smaller in individuals with
more sharp somatosensory functions.

Although it is difficult to interpret the cellular and
molecular events behind the GM volume calculated
from human MR images, cell density, cell size, synaptic
density, myelin sheath, glial cell size and number,
capillaries, water content, and GABAa receptor are
thought to influence GM volume (Morrison and Hof
1997; Draganski et al. 2004; Zatorre et al. 2012; Pomares
et al. 2017). However, it is unclear which of these
factors affect the results of the current study, and
thus, the reason for the negative correlation between
sensory performance and GM volume is unclear. It
is possible that the GM volume declines with growth
(Sowell et al. 2003; Gogtay et al. 2004), that synaptic
pruning in the cerebral cortex occurs during adolescence
(Huttenlocher and Dabholkar 1997; Petanjek et al.
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Fig. 3. Relationship between 2PD threshold and GM volume at each brain region that showed significant correlations with the 2PD threshold. Each
region is calculated using the mask image created with the AAL atlas. A total of 6 regions positively correlate with the 2PD threshold (P < 0.01); that
is, the lower the 2PD threshold (better sensory function), the lower the GM volume. Meanwhile, 3 regions negatively correlate with the 2PD threshold
(P < 0.01); that is, the lower the 2PD threshold, the higher the GM volume. All these regions are found in the cerebellum. (a) Lt. middle temporal gyrus,
(b) Lt. cerebellum VIII, (c) Rt. middle frontal gyrus, (d) Lt. superior frontal gyrus (dorsolateral), (e) Rt. cerebellum crus II, (f) Rt. middle temporal gyrus,
(g) Lt. IPL, (h) Rt. cerebellum VII, and (i) Lt. primary motor cortex.

2011), and that removing weak synapses improves
the computational performance in cortical regions
(Chechik et al. 1999). Furthermore, the balloon model
indicates that the stretching of the GM with myelin
growth and GM thinning improves the ability to distin-
guish signals (Harasty et al. 2003; Seldon 2005, 2007).

Kanai et al. (2011) highlighted that a smaller volume as
a result of pruning to remove inefficient synapses and
neurons enables more efficient processing (Kanai and
Rees 2011).

We agree with these ideas. However, many studies
have reported increases in GM volume due to specific
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experiences and training, such as in taxi drivers (Maguire
et al. 2000), pilots (Qiu et al. 2021), dancers (Hufner et al.
2011), and jugglers (Draganski et al. 2004). Moreover,
although the cause for this difference is unclear, it may
be due to nonlinear changes in the GM volume which are
influenced by the length and intensity of training, which
decrease following an initial increase, as advocated by
Takeuchi and colleagues (Takeuchi et al. 2011b). The
present study assessed healthy young adults with no
special training; thus, the changes were not an effect
of short-term training. Specifically, the somatosensory
function in this study might have been due to growth-
related loss of synapses or decrease in GM volume from
myelin growth rather than a temporary change in the GM
volume due to a short training period. However, these are
only speculations, and they need to be verified in future
animal experiments.

The present study found a negative correlation
between 2PD threshold and cerebellar GM volume, indi-
cating that the better the sensory function, the larger the
cerebellar GM volume. However, the whole-brain analysis
could not withstand multiple comparison correction, and
thus, the results should be interpreted with caution.
The cerebellum is not only important for movement
and speech, but it is also activated in somatosensory
stimulation or somatosensory discrimination tasks (Gao
et al. 1996; Pastor et al. 2004; Kitada et al. 2006; van
der Zwaag et al. 2013; van Kemenade et al. 2014).
Furthermore, it is active during cognitive tasks (Stoodley
and Schmahmann 2010, 2018; Stoodley et al. 2012; Guell
et al. 2018). These findings indicate that the relationship
between 2PD threshold and the cerebellar GM volume
is reasonable. However, in contrast to the results for the
cerebral cortex, there was a positive correlation between
performance and GM volume in the cerebellum. The
developmental process of the cerebellum differs from
that of the cerebral cortex (Stoessel and Majewska 2021),
which may account for this difference in 2PD threshold
and GM volume relationship. However, the reason for this
is unclear and requires further investigation.

Schmidt-Wilcke and others have reported that a lower
2PD threshold (better sensory function) indicates a larger
thalamus and S1 volume (Schmidt-Wilcke et al. 2018);
however, this was not observed in the present study. The
thalamus volume calculated by VBM is somewhat less
reproducible (Watanabe et al. 2021). This may explain
why the results of the relationship between GM volume
of the thalamus and 2PD reported by Schmidt-Wilcke
et al. could not be reproduced. However, the reason
for the lack of a significant correlation between S1
volume and the 2PD threshold in the current study
is unclear, although this might have been due to the
difference in the testing method for 2PD. Although we
similarly measured 2PD with precision instruments
and defined the 2PD threshold at 50%, the mean 2PD
threshold was 2.58 mm in our study, whereas it was
1.59 mm in the study by Schmidt-Wilcke et al. This might

have influenced the results, but the specific cause is
unknown.

A limitation of this study is that although VBM is
an excellent tool for analyzing minute morphological
changes in the human brain, the type of morphologi-
cal change induced is unclear. Moreover, the correlation
analysis of ALL labels was not corrected for multiple
comparisons to reduce the probability of type II statisti-
cal errors. However, all regions that correlated with the
2PD threshold (P < 0.01) are involved in somatosensory
information processing, and the results are reasonable
and complementary to the results of the whole-brain
analysis. Furthermore, because we only included young
healthy individuals, it is unclear whether similar trends
exist in other age groups or in patients with neurological
disorders. Further research is needed in these popula-
tions.

In conclusion, whole-brain analysis indicates that a
lower GM volume in the middle temporal gyrus and IPL
leads to a better somatosensory function. Thus, corti-
cal GM volume may be a biomarker for somatosensory
function. The results of this study can contribute to the
understanding of individual differences in somatosen-
sory function in young healthy subjects.
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